• Title/Summary/Keyword: Retroviral vectors

Search Result 33, Processing Time 0.031 seconds

Analysis of Syncytium Formation Mechanism induced by Ecotropic Murine Retrovirus (마우스레트로바이러스에 의한 합포체 형성 기작 분석)

  • Bae, Eun-Hye;Park, Sung-Han;Jung, Yong-Tae
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • To study the mechanism of syncytium formation, novel syncytia-inducing ecotropic murine retrovirus was used. Our previous result showed that amino acid substitutions at the RBD (receptor binding domain) of envelope glycoprotein contribute to syncytium formation. In this study, we have investigated if this fusion phenomenon could occur with retroviral vectors pseudotyped with the novel syncytia-inducing ecotropic murine leukemia virus Env. We have found that these vectors were not able to mediate virus-to-cell fusion in M. dunni murine cell lines. These findings indicate that syncytia-inducing ecotropic murine leukemia virus is capable of generating syncytia during its replication. There was also no correlation between the level of ecotropic murine leukemia virus receptor (mCAT-1) and the fusogenic effect.

TRAIL Based Therapy: Overview of Mesenchymal Stem Cell Based Delivery and miRNA Controlled Expression of TRAIL

  • Attar, Rukset;Sajjad, Farhana;Qureshi, Muhammad Zahid;Tahir, Fizza;Hussain, Ejaz;Fayyaz, Sundas;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6495-6497
    • /
    • 2014
  • Rapidly increasing number of outstanding developments in the field of TRAIL mediated signaling have revolutionized our current information about inducing and maximizing TRAIL mediated apoptosis in resistant cancer cells. Data obtained with high-throughput technologies have provided finer resolution of tumor biology and now it is known that a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constitutes the tumor stroma. Utility of mesenchymal stem cells (MSCs) as cellular vehicles has added new layers of information. There is sufficient experimental evidence substantiating efficient gene deliveries into MSCs by retroviral, lentiviral and adenoviral vectors. Moreover, there is a paradigm shift in molecular oncology and recent high impact research has shown controlled expression of TRAIL in cancer cells on insertion of complementary sequences for frequently downregulated miRNAs. In this review we have attempted to provide an overview of utility of TRAIL engineered MSCs for effective killing of tumor and potential of using miRNA response elements as rheostat like switch to control expression of TRAIL in cancer cells.

The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells (레트로바이러스(retrovirus)의 NIH 3T3 세포로의 유전자 전달효율을 증가시키기 위한 적절한 조건들)

  • Lee, Jun Ah;Lee, Kang-Min;Lee, Hyun Jae;Lee, Yun Jeong;Kim, Dong Ho;Lim, Jung Sub;Park, Kyung-Duk
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.1011-1017
    • /
    • 2007
  • Purpose : We tried to assess the optimal conditions to improve low transduction efficiency and their effect on target cells. Methods : Cultured NIH 3T3 cells were incubated with retroviral vectors bearing an enhanced green fluorescent protein (eGFP) gene. We varied the ratio of viral vectors to target cells (1:1-1:8) and the number of transfections (${\times}1$, ${\times}2$), and compared transduction efficiencies. Also, the effects of polybrene on transduction efficiency and viability of target cells were assessed. Transduction of the eGFP gene was evaluated by observing NIH 3T3 cells under a fluorescence microscope and efficiencies were measured by the percentage of eGFP positive cells using FACscan. Results : As the ratio of retroviral vectors to target cells increased, transduction efficiency was greatly improved, from 7% (1:1) to 38% (1:4). However, transduction efficiency did not increase any more when the ratio increased from 1:4 to 1:8. Cells transfected twice showed higher transduction efficiencies than cells transfected once, at a ratio of 1:8. The eGFP gene transduced to NIH 3T3 cells sustained its expression during repeated passages. However, after the third passage (day 9), the percentage of eGFP positive cells began to decline. The degree of this decline in eGFP expression was lower in cells transfected twice than in cells transfected once (P<0.05). The addition of polybrene did not have any toxic effect on NIH 3T3 cells and greatly increased transduction efficiency (P=0.007). In addition to vector component, transduction efficiency was very sensitive to culture confluence. Cells cultured and transfected in 24-well plate showed higher transduction efficiency, although cells cultured in 6- well plate proliferated more (P=0.024). Conclusion : Our data could be used as a basis for retrovirus-based gene therapy. Further study will follow using human cells as target cells.

Trends in Protein Engineering for Gene Targeting: Homing Endonucleases and Zinc Finger Nucleases (유전자 표적화를 위한 단백질공학 연구동향: Homing Endonucleases and Zinc Finger Nucleases)

  • Cheong, Dea-Eun;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • Monogenic diseases are resulted from modifications in a single gene of human cells. Because their treatment with pharmacological medicine have a temporary effect, continuous nursing care and retreatment are required. Gene therapy, gene targeting and induced pluripotent stem cell (iPSC) are considered permanent treatment methods of them. In gene therapy, however, retroviral vectors that have potential toxicity caused by random insertion of harmful virus are used as vehicles for transferring genetic materials. On the other hand, gene targeting could replace and remove the modified gene though homologous recombination (HR) induced by site-specific endonucleases. This short review provides a brief overview on the recently tailored endonucleses with high selectivity for HR.

A Study on the Cytogenetics and Differentiation of Marine Animals (해양동물의 세포유전과 분화연구)

  • 손진기
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Present study was aimed to summary the recent reports of chromosomal technology such like a polyploidv, sex differentiation, gynogenesis, transgenic fish and gene manipulation. Triploid cells for rainbow trout and channel catfish were induced through thermal shocks of varying temperature levels and produced as a industrial use. A monosex fish with homogametic females of 15 species of high valued fish were produced by exposing to irradiation. It seemed that different irradiation was suitable to inactivate the sperm and block the formation in producing the gynogenetic diploids. Since 1985, transgenic fish have been successfully produced by microinjecting or electroporating desired foreign DNA into unfertilized or newly fertilized eggs using about 40 fish species. More recently, transgenic fish have also been produced by infecting newly fertilized eggs with pantropic, defective retroviral vectors carrying desired foreign DNA. These transgenic fish can serve as excellent experimental models for basic scientific investigations as well as in marine biotechnological applications.

  • PDF

Current Status of Gene Therapy as a New Drug Delivery System (신약전달기술체계인 유전자 치료의 현재까지의 개발동향)

  • Bae, Yun-Sung;Cho, Jung-Yoon;Ji, Sang-Mi;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2002
  • Gene therapy is fundamentally a sophisticated drug delivery technology to cure a disease by the transfer of genetic material to modify living cells. In other words, the gene is used as a therapeutic drug much like a chemical compound is employed in chemotherapy. Currently almost 600 clinical trials are underway worldwide since the first clinical trials carried out in 1990 to treat adenosine deaminase deficiency using retroviral vectors. Despite the great progress still is there no gene therapy product being approved as a new drug. This is partly due to a lack of an ideal gene delivery system that is safe and can provide stable, optimal level production of the therapeutic proteins in the cell. This review covers the current status of several different biological and physico-chemical agents that are being developed as gene delivery vehicles. Although gene therapy promises great hopes toward the cure of a broad spectrum of genetic and acquired diseases, the success of gene therapy heavily asks for the development of vector systems for safe and efficient application in humans.

VSV-G Viral Envelope Glycoprotein Prepared from Pichia pastoris Enhances Transfection of DNA into Animal Cells

  • Liu, Xin;Dong, Ying;Wang, Jingquan;Li, Long;Zhong, Zhenmin;Li, Yun-Pan;Chen, Shao-Jun;Fu, Yu-Cai;Xu, Wen-Can;Wei, Chi-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1098-1105
    • /
    • 2017
  • Vesicular stomatitis virus G glycoprotein (VSV-G) has been widely used for pseudotyping retroviral, lentiviral, and artificial viral vectors. The objective of this study was to establish a potential approach for large-scale production of VSV-G. To this end, VSV-G was cloned with an N-terminal His-tag into Pichia pastoris expression vector pPIC3.5K. Three clones ($Mut^s$) containing the VSV-G expression cassette were identified by PCR. All clones proliferated normally in expansion medium, whereas the proliferation was reduced significantly under induction conditions. VSV-G protein was detected in cell lysates by western blot analysis, and the highest expression level was observed at 96 h post induction. VSV-G could also be obtained from the condition medium of yeast protoplasts. Furthermore, VSV-G could be incorporated into Ad293 cells and was able to induce cell fusion, leading to the transfer of cytoplasmic protein. Finally, VSV-G-mediated DNA transfection was assayed by flow cytometry and luciferase measurement. Incubation of VSV-G lysate with the pGL3-control DNA complex increased the luciferase activity in Ad293 and HeLa cells by about 3-fold. Likewise, incubation of VSV-G lysate with the pCMV-DsRed DNA complex improved the transfection efficiency into Ad293 by 10% and into HeLa cells by about 1-fold. In conclusion, these results demonstrate that VSV-G could be produced from P. pastoris with biofunctionalities, demonstrating that large-scale production of the viral glycoprotein is feasible.

Expression of the E. coli LacZ Gene in Chicken Embryos Using Replication Defective Retroviral Vectors Packaged With Vesicular Stomatitis Virus G Glycoprotein Envelopes

  • Kim, Teoan;Lee, Young Man;Lee, Hoon Taek;Heo, Young Tae;Yom, Heng-Cherl;Kwon, Mo Sun;Koo, Bon Chul;Whang, Key;Roh, Kwang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2001
  • Despite the high potency of the retrovirus vector system in gene transfer, one of the main drawbacks of has been difficulty in preparing highly concentrated virus stock. Numerous efforts to boost the virus titer have ended in unsatisfactory results mainly due to fragile property of retrovirus envelope protein. In this study, to overcome this problem, we constructed our own retrovirus vector system producing vector viruses encapsulated with VSV-G (vesicular stomatitis virus G glycoprotein). Concentration process of the virus stock by ultracentrifuge did not sacrifice the virus infectivity, resulting in more than 108 to 109 CFU (colony forming unit) per ml on most of the target cell lines tested. Application of this high-titer retrovirus vector system was tested on chicken embryos. Injection of virus stock beneath the blastoderms of pre-incubated fertilized eggs resulted in chick embryos expressing E. coli LacZ gene with 100% efficiency. Therefore, our results suggest that it is possible to transfer the foreign gene into chicken embryo using our high-titer retrovirus vector.

Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Joo, So-Young;Chang, Hee-Jin;Son, Ji-Woong;Kim, Kwan-Young;Kim, Keong-Seok;Kim, Chang-Ho;Park, Jae-Ho;Lee, Jong-Ki;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.229-240
    • /
    • 1999
  • Background: The impact of the immune response on cancer gene therapy using viral vectors to deliver a "suicide gene" is currently unclear. A vigrous immune response targeted at viral proteins or transgene may enhance the efficacy of tumor destruction and even augment responses to tumor antigens. These responses may involve the release of cytokines and stimulation of tumor specific cytotoxic T-lymphocytes that enhance therapeutic efficacy. On the other hand, a vigorous rapid cellular immune response may destroy cells expressing the therapeutic gene and attenuate the response to therapy. Furthermore, development of neutralizing antibody responses may prevent readministration of virus, a potentially significant limitation. Evaluating the significance of these limitations in animal models and developing solutions are therefore of obvious importance. Methods: After retroviral transduction of mouse mesothelioma cell line(AB12) with Herpes Simplex Virus thymidine kinase (HSVtk) gene in vitro, subcutaneous flank tumors were established. To study the effect of intact immune system on efficacy of tumor erradication, the ability of the HSVtk/ganciclovir system to inhibit tumor growth was compared among normal Balb/c mice, immunodeficient Balb/c-nude and SCID mice, and Balb/c mice immunosuppressed with cyclosporin. Results: Ganciclovir treatment resulted in greater inhibition of tumor growth in Balb/c mice compared with immunodeficient Balb/c-nude mice and SCID mice(in immunodeficient mice, there were no growth inhibition by ganciclovir treatment). Ganciclovir treatment resulted in greater inhibition of tumor growth in noncyclosporin (CSA) treated Balb/c mice compared with CSA treated Balb/c mice. On day 8, mean ganciclovir-treated tumor volume were 65% of control tumor volume in Balb/c mice versus 77% control tumor volume in CSA-treated Balb/c mice. This effect was still evident during therapy (day 11 and 13). On day 13, non-CSA treated tumor volume was 35% of control tumor volume versus 60% of control tumor volume in CSA treated Balb/c mice. Duration of expression of HSVtk was not affected by the immunosuppression with CSA. Conclusion: These results indicate that the immune responses against retrovirally transduced cells enhance the efficacy of the HSVtk/ganciclovir system. These findings have important implications for clinical trials using currently available retrovirus vectors as well as for future vector design.

  • PDF

Regulation of GFP Expression Using the Tetracycline Inducible Retroviral Vector System (Tetracycline Inducible Retrovirus Vector System에 의한 GFP 유전자의 발현 조절)

  • Koo Bon Chul;Kwon Mo Sun;Kim Teoan
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.57-62
    • /
    • 2005
  • One of the critical problems to be solved in transgenic animal production is uncontrollable constitutive expression of foreign genes, which usually results in serious physiological disturbances in the transgenic animal. To circumvent this problem, we constructed and tested two retrovirus vectors designed to express the GFP(green fluorescent protein) gene under the control of the tetracycline-inducible promoters. To maximize the GFP gene expression at turn-on state, WPRE(woodchuck hepatitis virus posttranscriptional regulatory element) sequence was introduced into the retrovirus vectors at downstream region of either the GFP gene or the sequence encoding rtTA(reverse tetracycline-controlled transactivator). Transformed cells were cultured in the medium supplemented with or without doxycycline(tetracycline derivative) for 48 hours, and induction efficiency was measured by comparing the GFP gene expression level using fluorometry and western blotting. Higher GFP expression was observed from the vector carrying the WPRE sequence at 3' side of the GFP gene, while tighter expression control(up to 20 fold) was obtained from the vector in which the WPRE sequence was placed at 3' side of rtTA sequence. The resulting tetracycline inducible vector system may be used in transgenic animal production and gene therapy.