Browse > Article

Trends in Protein Engineering for Gene Targeting: Homing Endonucleases and Zinc Finger Nucleases  

Cheong, Dea-Eun (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Kim, Geun-Joong (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Publication Information
KSBB Journal / v.25, no.3, 2010 , pp. 215-222 More about this Journal
Abstract
Monogenic diseases are resulted from modifications in a single gene of human cells. Because their treatment with pharmacological medicine have a temporary effect, continuous nursing care and retreatment are required. Gene therapy, gene targeting and induced pluripotent stem cell (iPSC) are considered permanent treatment methods of them. In gene therapy, however, retroviral vectors that have potential toxicity caused by random insertion of harmful virus are used as vehicles for transferring genetic materials. On the other hand, gene targeting could replace and remove the modified gene though homologous recombination (HR) induced by site-specific endonucleases. This short review provides a brief overview on the recently tailored endonucleses with high selectivity for HR.
Keywords
Gene targeting; homologous recombination; homing endonuclease; zinc finger nuclease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Desjarlais, J. R. and J. M. Berg (1992) Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc. Natl. Acad. Sci. USA. 89: 7345-7349.   DOI   ScienceOn
2 Beumer, K. J., J. K. Trautman, A. Bozas, J.-L. Liu, J. Rutter, J. G. Gall, and D. Carroll (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences. 105: 19821-19826.   DOI   ScienceOn
3 Bronson, S. K., E. G. Plaehn, K. D. Kluckman, J. R. Hagaman, N. Maeda, and O. Smithies (1996) Singlecopy transgenic mice with chosen-site integration. Proc. Natl. Acad. Sci. USA. 93: 9067-9072.   DOI   ScienceOn
4 Urnov, F. D., J. C. Miller, Y.-L. Lee, C. M. Beausejour, J. M. Rock, S. Augustus, A. C. Jamieson, M. H. Porteus, P. D. Gregory, and M. C. Holmes (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 435: 646-651.   DOI   ScienceOn
5 Wah, D. A., J. Bitinaite, I. Schildkraut, and A. K. Aggarwal (1998) Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA. 95: 10564-10569.   DOI   ScienceOn
6 Guo, J., T. Gaj, and C. F. Barbas Iii (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J. Mol. Biol. 400: 96-107.   DOI   ScienceOn
7 Cai, C., Y. Doyon, W. Ainley, J. Miller, R. DeKelver, E. Moehle, J. Rock, Y.-L. Lee, R. Garrison, L. Schulenberg, R. Blue, A. Worden, L. Baker, F. Faraji, L. Zhang, M. Holmes, E. Rebar, T. Collingwood, B. Rubin-Wilson, P. Gregory, F. Urnov, and J. Petolino (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 69: 699-709.   DOI   ScienceOn
8 Gaspar, H. B., K. L. Parsley, S. Howe, D. King, K. C. Gilmour, J. Sinclair, G. Brouns, M. Schmidt, C. Von Kalle, T. Barington, M. A. Jakobsen, H. O. Christensen, A. Al Ghonaium, H. N. White, J. L. Smith, R. J. Levinsky, R. R. Ali, C. Kinnon, and A. J. Thrasher (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 364: 2181-2187.   DOI   ScienceOn
9 Flick, K. E., M. S. Jurica, R. J. Monnat, Jr., and B. L. Stoddard (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature. 394: 96-101.   DOI   ScienceOn
10 Redondo, P., J. Prieto, I. G. Munoz, A. Alibes, F. Stricher, L. Serrano, J.-P. Cabaniols, F. Daboussi, S. Arnould, C. Perez, P. Duchateau, F. Paques, F. J. Blanco, and G. Montoya (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature. 456: 107-111.   DOI   ScienceOn
11 Greisman, H. A. and C. O. Pabo (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 275: 657-661.   DOI
12 Mino, T., Y. Aoyama, and T. Sera (2009) Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer. J. Biotechnol. 140: 156-161.   DOI
13 Szczepek, M., V. Brondani, J. Buchel, L. Serrano, D. J. Segal, and T. Cathomen (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotech. 25: 786-793.   DOI   ScienceOn
14 Vanamee, E. S., S. Santagata, and A. K. Aggarwal (2001) FokI requires two specific DNA sites for cleavage. J. Mol. Biol. 309: 69-78.   DOI   ScienceOn
15 Bitinaite, J., D. A. Wah, A. K. Aggarwal, and I. Schildkraut (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA. 95: 10570-10575.   DOI   ScienceOn
16 Sander, J. D., P. Zaback, J. K. Joung, D. F. Voytas, and D. Dobbs (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucl. Acids Res. 35: W599-605.   DOI
17 Maeder, M. L., S. Thibodeau-Beganny, A. Osiak, D. A. Wright, R. M. Anthony, M. Eichtinger, T. Jiang, J. E. Foley, R. J. Winfrey, J. A. Townsend, E. Unger- Wallace, J. D. Sander, F. Muller-Lerch, F. Fu, J. Pearlberg, C. Gobel, JustinDassie, S. M. Pruett-Miller, M. H. Porteus, D. C. Sgroi, A. J. Iafrate, D. Dobbs, P. B. McCray Jr, T. Cathomen, D. F. Voytas, and J. K. Joung (2008) Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell. 31: 294-301.   DOI   ScienceOn
18 Wright, D. A., S. Thibodeau-Beganny, J. D. Sander, R. J. Winfrey, A. S. Hirsh, M. Eichtinger, F. Fu, M. H. Porteus, D. Dobbs, D. F. Voytas, and J. K. Joung (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protocols. 1: 1637-1652.   DOI   ScienceOn
19 Isalan, M., A. Klug, and Y. Choo (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotech. 19: 656-660.   DOI   ScienceOn
20 Ashworth, J., J. J. Havranek, C. M. Duarte, D. Sussman, R. J. Monnat, B. L. Stoddard, and D. Baker (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature. 441: 656-659.   DOI   ScienceOn
21 Eklund, J. L., U. Y. Ulge, J. Eastberg, and R. J. Monnat, Jr (2007) Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucl. Acids Res. 35: 5839-5850.   DOI   ScienceOn
22 Chan, S.-h., Y. Bao, E. Ciszak, S. Laget, and S.-y. Xu (2007) Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities. Nucl. Acids Res. 35: 6238-6248.   DOI   ScienceOn
23 Foley, J. E., J.-R. J. Yeh, M. L. Maeder, D. Reyon, J. D. Sander, R. T. Peterson, and J. K. Joung (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE. 4: e4348.   DOI
24 Chica, R. A., N. Doucet, and J. N. Pelletier (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16: 378-384.   DOI   ScienceOn
25 Choulika, A., A. Perrin, B. Dujon, and J. Nicolas (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 1968-1973.   DOI
26 Stoddard, B. L. (2005) Homing endonuclease structure and function. Q. Rev. Biophys. 38: 49-95.
27 Lee, G. S., M. B. Neiditch, S. S. Salus, and D. B. Roth (2004) RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAGNicking initiates homologous recombination. Cell. 117: 171-184.   DOI   ScienceOn
28 Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, T. D. Hocking, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and S. L. Amacher (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotech. 26: 702-708.   DOI   ScienceOn
29 Carroll, D., K. J. Beumer, J. J. Morton, A. Bozas, and J. K. Trautman (2008) Gene Targeting in Drosophila and Caenorhabditis elegans With Zinc-Finger Nucleases. pp. 63-77. In: Davis, D. G, and Kevin J. Kayser (eds.). Chromosomal Mutagenesis. Humana Press, Totowa, New Jersey.
30 McConnell Smith, A., R. Takeuchi, S. Pellenz, L. Davis, N. Maizels, R. J. Monnat, and B. L. Stoddard (2009) Generation of a nicking enzyme that stimulates sitespecific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proceedings of the National Academy of Sciences. 106: 5099-5104.   DOI   ScienceOn
31 Jurenaite-Urbanaviciene, S., J. Serksnaite, E. Kriukiene, J. Giedriene, C. Venclovas, and A. Lubys (2007) Generation of DNA cleavage specificities of type II restriction endonucleases by reassortment of target recognition domains. Proceedings of the National Academy of Sciences. 104: 10358-10363.   DOI   ScienceOn
32 Capecchi, M. R. (2001) Generating mice with targeted mutations. Nat. Med. 7: 1086-1090.   DOI   ScienceOn
33 Katada, H. and M. Komiyama (2009) Artificial restriction DNA cutters as new tools for gene manipulation. Chembiochem. 10: 1279-1288.   DOI   ScienceOn
34 Mimitou, E. P. and L. S. Symington (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem. Sci. 34: 264-272.   DOI
35 Coates, C. J., J. M. Kaminski, J. B. Summers, D. J. Segal, A. D. Miller, and A. F. Kolb (2005) Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol. 23: 407-419.   DOI   ScienceOn
36 Smithies, O. (2001) Forty years with homologous recombination. Nat. Med. 7: 1083-1086.   DOI   ScienceOn
37 Albert Cotton F., E. E. H., Jr., and Margaret J. Legg (1979) Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme-thymidine 3′, 5′-bisphosphate-calcium ion complex at 1.5-A resolution. Proc. Natl. Acad. Sci. USA. 76: 2551-2555.   DOI   ScienceOn
38 Bibikova, M., M. Golic, K. G. Golic, and D. Carroll (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161: 1169-1175.
39 Sedivy, J. M. and A. Dutriaux (1999) Gene targeting and somatic cell genetics: a rebirth or a coming of age? Trends Genet. 15: 88-90.   DOI   ScienceOn
40 Friedhoff, P. and A. Pingoud (2007) Engineering Sitespecific Endonucleases. pp. 111-123 In: Arndt, K. M., and Kristian M. Müller (eds). Protein Engineering Protocols. Humana Press, Totowa, New Jersey.
41 Pei, D. and P. G. Schultz (1990) Site-specific cleavage of duplex DNA with a lambda. repressor-staphylococcal nuclease hybrid. J. Am. Chem. Soc. 112: 4579-4580.   DOI
42 Aiuti, A., S. Slavin, M. Aker, F. Ficara, S. Deola, A. Mortellaro, S. Morecki, G. Andolfi, A. Tabucchi, F. Carlucci, E. Marinello, F. Cattaneo, S. Vai, P. Servida, R. Miniero, M. G. Roncarolo, and C. Bordignon (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 296: 2410-2413.   DOI
43 Amberger, J., C. A. Bocchini, A. F. Scott, and A. Hamosh (2009) McKusick's Online Mendelian inheritance in man (OMIM(R)). Nucl. Acids Res. 37: D793-796.   DOI   ScienceOn
44 O'Connor, T. P. and R. G. Crystal (2006) Genetic medicines: treatment strategies for hereditary disorders. Nat. Rev. Genet. 7: 261-276.   DOI   ScienceOn
45 Capecchi, M. R. (1989) The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 5: 70-76.   DOI   ScienceOn
46 Abbott, A. (2006) Questions linger about unexplained gene-therapy trial death. Nat. Med. 12: 597.