• 제목/요약/키워드: Retrieval-Augmented Generation (RAG)

검색결과 13건 처리시간 0.025초

Retrieval-Augmented Generation-based Question Answering Technology for Construction Safety

  • Minwoo Jeong;Taegeon Kim;Seokhwan Kim;Hongjo Kim
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.439-446
    • /
    • 2024
  • This study investigates the potential of Retrieval-Augmented Generation (RAG)-based Question Answering (QA) technology for accurate and relevant responses of Large Language Models (LLMs) to construction safety-related queries. Despite LLMs' advancements, their application, especially a Q&A Chatbot faces challenges due to hallucination and lack of domain-specific details. This study explores RAG's potentials to mitigate these issues by making LLM refer to external databases, such as the OSHA Field Safety and Health Manual, for generating precise and factual contents. A comparative analysis of different RAG technologies-Naïve-RAG, Rerank-RAG, and Iterative Retrieval-Generation-demonstrates their effectiveness over traditional LLM approaches. The findings highlight RAG's significance in producing structured, fact-based responses, underscoring its superiority in addressing the domain-specific informational needs regarding construction safety practices. This research marks a step forward in the application of generative AI technologies to enhance safety standards and practices within the construction industry.

검색 증강 생성(RAG) 기술의 최신 연구 동향에 대한 조사 (A Survey on the Latest Research Trends in Retrieval-Augmented Generation)

  • 이은빈;배호
    • 정보처리학회 논문지
    • /
    • 제13권9호
    • /
    • pp.429-436
    • /
    • 2024
  • Large Language Model(LLM)의 급격한 발전은 자연어 처리 분야에 혁신을 불러 일으켜 이를 적절하게 활용하는 것이 중요한 주제로 떠오르고 있다. 방대한 데이터로 훈련된 LLM은 다양한 주제에 대한 텍스트 생성이 가능하여 콘텐츠 생성, 기계 번역, 챗봇 등 여러 방식으로 적용이 가능하나 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어렵다는 단점이 존재한다. 모델 훈련이 완료된 이후의 최신 정보로 즉각 업데이트되기도 어려우며, 모델이 실제로 존재하지 않는 정보나 오류에 대해 그럴 듯하게 답변하는 환각 현상(Hallucination) 역시 주요 문제점이다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval-Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상하기 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 RAG의 기본 아키텍처를 소개하고, LLM에 RAG를 적용하기 위한 연구 및 최적화의 최신 동향을 분석한다. RAG를 평가하기 위한 다양한 기법들을 소개하고, 실제 산업에서 RAG를 활용하기 위해 성능을 최적화하거나 응용한 사례들을 분석한다. 이를 바탕으로 향후 RAG 모델이 발전할 수 있는 연구 방향성을 제시하고자 한다.

지식 기반 QA개선을 위한 Advanced RAG 시스템 구현 방법: Graph Agent 활용 (A Graph-Agent-Based Approach to Enhancing Knowledge-Based QA with Advanced RAG)

  • 정천수
    • 지식경영연구
    • /
    • 제25권3호
    • /
    • pp.99-119
    • /
    • 2024
  • 본 연구는 지식 기반 질문-답변(QA) 시스템을 개선하기 위해 기존 RAG(Retrieval Augmented Generation) 모델의 한계를 극복하고, Graph 기반의 향상된 RAG 시스템을 구현하여 품질 좋은 생성형 AI 서비스 개발을 목표로 하고 있다. 기존 RAG 모델은 검색된 정보를 활용해 높은 정확도와 유창성을 보이지만, 한 번 적재된 지식을 재작업 없이 사용해 답변을 생성하기 때문에 정확도가 떨어질 수 있다. 또한, RAG 구성 시점 이후의 실시간 데이터를 반영할 수 없어 맥락 이해 능력이 부족하고 편향된 정보 문제를 야기할 수 있다. 이러한 한계를 개선하기 위해 본 연구에서는 Graph 기술을 활용한 향상된 RAG 시스템을 구현하였다. 이 시스템은 정보를 효율적으로 검색하고 활용할 수 있도록 설계되었다. 특히, LangGraph를 활용하여 검색된 정보의 신뢰성을 평가하고, 다양한 정보를 종합하여 보다 정확하고 향상된 답변을 생성할 수 있도록 하였다. 또한, 구체적인 작동 방식과 주요 구현 단계 및 사례를 구현 코드와 검증 내용을 통해 제시하여 Advanced RAG 기술에 대한 이해를 높였다. 이를 통해 Advanced RAG를 활용한 기업 내 서비스 구현에 실질적인 지침을 제공하여 기업들이 적극적으로 활용할 수 있도록 하는 데 의미가 있다.

검색 증강 생성(RAG) 기술에 대한 최신 연구 동향 (A Survey on Retrieval-Augmented Generation)

  • 이은빈;배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.745-748
    • /
    • 2024
  • 글로벌 시장에서 Large Language Model(LLM)의 발전이 급속하게 이루어지며 활용도가 높아지고 있지만 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어려우며, 새로운 데이터로 업데이트하기 어렵다는 한계점이 있다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval- Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상시키려는 연구가 활발히 이루어지고 있다. 본 논문에서는 LLM의 검색 기능을 강화하기 위한 RAG의 연구 및 평가기법에 대한 최신 연구 동향을 소개하고 실제 산업에서 활용하기 위한 최적화 및 응용 사례를 소개하며 이를 바탕으로 향후 연구 방향성을 제시하고자 한다.

RAG를 이용한 한국어 오픈 도메인 질의 응답 (Rertieval-Augmented Generation for Korean Open-domain Question Answering)

  • 강대욱;나승훈;김태형;류휘정;장두성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.105-108
    • /
    • 2022
  • 오픈 도메인 질의 응답은 사전학습 언어모델의 파라미터에 저장되는 정보만을 사용하여 답하는 질의 응답 방식과 달리 대량의 문서 등에서 질의에 대한 정답을 찾는 문제이다. 최근 등장한 Dense Retrieval은 BERT 등의 모델을 사용해 질의와 문서들의 벡터 연산으로 질의와 문서간의 유사도를 판별하여 문서를 검색한다. 이러한 Dense Retrieval을 활용하는 방안 중 RAG는 Dense Retrieval을 이용한 외부 지식과 인코더-디코더 모델에 내재된 지식을 결합하여 성능을 향상시킨다. 본 논문에서는 RAG를 한국어 오픈 도메인 질의 응답 데이터에 적용하여 베이스라인에 비해 일부 향상된 성능을 보임을 확인하였다.

  • PDF

LLM과 RAG 기반 BIM 지식 전문가 에이전트 연구 (BIM Knowledge Expert Agent Research Based on LLM and RAG)

  • 강태욱;박승화
    • 한국BIM학회 논문집
    • /
    • 제14권3호
    • /
    • pp.22-30
    • /
    • 2024
  • Recently, LLM (Large Language Model), a rapidly developing generative AI technology, is receiving much attention in the smart construction field. This study proposes a methodology for implementing an knowledge expert system by linking BIM (Building Information Modeling), which supports data hub functions in the smart construction domain with LLM. In order to effectively utilize LLM in a BIM expert system, excessive model learning costs, BIM big data processing, and hallucination problems must be solved. This study proposes an LLM-based BIM expert system architecture that considers these problems. This study focuses on the RAG (Retrieval-Augmented Generation) document generation method and search algorithm for effective BIM data retrieval, with the goal of implementing an LLM-based BIM expert system within a small GPU resource. For performance comparison and analysis, a prototype of the designed system is developed, and implications to be considered when developing an LLM-based BIM expert system are derived.

Design of a Question-Answering System based on RAG Model for Domestic Companies

  • Gwang-Wu Yi;Soo Kyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.81-88
    • /
    • 2024
  • 생성형 AI 시장의 급속한 성장과 국내 기업과 기관의 큰 관심에도 불구하고, 부정확한 정보제공과 정보유출의 우려가 생성형 AI 도입을 저해하는 주된 요인으로 나타났다. 이를 개선하기 위해 본 논문에서는 검색-증강 생성(Retrieval-Augmented Generation, RAG) 구조 기반의 질의응답시스템을 설계·구현하였다. 제안 방법은 한국어 문장 임베딩을 사용해 지식 데이터베이스를 구축하고, 최적화된 검색으로 질문 관련 정보를 찾아 생성형 언어 모델에게 제공된다. 또한, 이용자가 지식 데이터 베이스를 직접 관리하여 변경되는 업무 정보를 효율적으로 업데이트하도록 하고, 시스템이 폐쇄망에서 동작할 수 있도록 설계하여 기업의 기밀 정보의 유출 가능성을 낮추었다. 국내 기업 등 조직에서 생성형 AI를 도입하고 활용하고자 할 때 본 연구가 유용한 참고자료가 되길 기대한다.

RAG End2End 모델에서 LoRA기법을 이용한 성능 향상에 관한 연구 (Research on Performance Improvement Using LoRA Techniques in RAG End2End Models)

  • 김민창;염세훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.600-601
    • /
    • 2024
  • 본 논문은 RAG(Retrieval-Augmented Generation) End2End의 리소스(Resource) 과부하 문제를 해결하는 동시에 모델 성능을 향상 시키기 위해 PEFT(Parameters-Efficient Fine-Tuning)기술인 LoRA(Low Rank Adaptation)적용에 관한 연구이다. 본 논문에서는 RAG End2End 모델의 파라미터 값과 개수를 유지하면서, LRM(Low Rank Matrices)을 이용하여 추가적인 파라미터만을 미세 조정하는 방식으로, 전반적인 모델의 효율성을 극대화하는 방안을 제시하였다. 본 논문에서 다양한 도메인에 데이터 셋에 대한 제안 방식의 성능을 검증하고자 Conversation, Covid-19, News 데이터 셋을 사용하였다. 실험결과, 훈련에 필요한 파라미터의 크기가 약 6.4억개에서 180만개로 감소하였고, EM(Exact Match)점수가 유사하거나 향상되었다. 이는 LoRA를 통한 접근 법이 RAG End2End 모델의 효율성을 개선할 수 있는 효과적인 전략임을 증명하였다.

Enhancing Automated Report Generation: Integrating Rivet and RAG with Advanced Retrieval Techniques

  • Doo-Il Kwak;Kwang-Young Park
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.753-756
    • /
    • 2024
  • This study integrates Rivet and Retrieved Augmented Generation (RAG) technologies to enhance automated report generation, addressing the challenges of large-scale data management. We introduce novel algorithms, such as Dynamic Data Synchronization and Contextual Compression, expected to improve report generation speed by 40% and accuracy by 25%. The application, demonstrated through a model corporate entity, "Company L," shows how such integrations can enhance business intelligence. Empirical validations planned will utilize metrics like precision, recall, and BLEU to substantiate the improvements, setting new benchmarks for the industry. This research highlights the potential of advanced technologies in transforming corporate data processes.

효과적인 RAG Document Data 구조화 전략 (Effective RAG Document Data Structuring Strategy)

  • 손영진;임유경;박민정;채상미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.807-809
    • /
    • 2024
  • 대규모 언어 모델의 발전은 텍스트 생성 및 정보 제공 분야에서 큰 진전을 이루었으며 사용자와의 원활한 소통을 가능하게 했다. 그러나 언어 모델은 특화된 정보 제공에 한계를 가지며 때때로 부정확한 정보를 생성할 수 있다. RAG(Retrieval-Augmented Generation) 기법은 이러한 한계를 극복하기 위해 제안되었다. 본 연구에서는 RAG 의 답변품질과 효율성을 높이기 위해 외부 문서 정보와 단어 단위로 카테고리화된 인덱싱 데이터 세트를 함께 제공하여 보다 정확하고 신뢰성 있는 문서 생성을 가능하게 하는 접근법을 제시한다.