The 10th International Conference on Construction Engineering and Project Management
/
pp.439-446
/
2024
This study investigates the potential of Retrieval-Augmented Generation (RAG)-based Question Answering (QA) technology for accurate and relevant responses of Large Language Models (LLMs) to construction safety-related queries. Despite LLMs' advancements, their application, especially a Q&A Chatbot faces challenges due to hallucination and lack of domain-specific details. This study explores RAG's potentials to mitigate these issues by making LLM refer to external databases, such as the OSHA Field Safety and Health Manual, for generating precise and factual contents. A comparative analysis of different RAG technologies-Naïve-RAG, Rerank-RAG, and Iterative Retrieval-Generation-demonstrates their effectiveness over traditional LLM approaches. The findings highlight RAG's significance in producing structured, fact-based responses, underscoring its superiority in addressing the domain-specific informational needs regarding construction safety practices. This research marks a step forward in the application of generative AI technologies to enhance safety standards and practices within the construction industry.
Large Language Model(LLM)의 급격한 발전은 자연어 처리 분야에 혁신을 불러 일으켜 이를 적절하게 활용하는 것이 중요한 주제로 떠오르고 있다. 방대한 데이터로 훈련된 LLM은 다양한 주제에 대한 텍스트 생성이 가능하여 콘텐츠 생성, 기계 번역, 챗봇 등 여러 방식으로 적용이 가능하나 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어렵다는 단점이 존재한다. 모델 훈련이 완료된 이후의 최신 정보로 즉각 업데이트되기도 어려우며, 모델이 실제로 존재하지 않는 정보나 오류에 대해 그럴 듯하게 답변하는 환각 현상(Hallucination) 역시 주요 문제점이다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval-Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상하기 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 RAG의 기본 아키텍처를 소개하고, LLM에 RAG를 적용하기 위한 연구 및 최적화의 최신 동향을 분석한다. RAG를 평가하기 위한 다양한 기법들을 소개하고, 실제 산업에서 RAG를 활용하기 위해 성능을 최적화하거나 응용한 사례들을 분석한다. 이를 바탕으로 향후 RAG 모델이 발전할 수 있는 연구 방향성을 제시하고자 한다.
본 연구는 지식 기반 질문-답변(QA) 시스템을 개선하기 위해 기존 RAG(Retrieval Augmented Generation) 모델의 한계를 극복하고, Graph 기반의 향상된 RAG 시스템을 구현하여 품질 좋은 생성형 AI 서비스 개발을 목표로 하고 있다. 기존 RAG 모델은 검색된 정보를 활용해 높은 정확도와 유창성을 보이지만, 한 번 적재된 지식을 재작업 없이 사용해 답변을 생성하기 때문에 정확도가 떨어질 수 있다. 또한, RAG 구성 시점 이후의 실시간 데이터를 반영할 수 없어 맥락 이해 능력이 부족하고 편향된 정보 문제를 야기할 수 있다. 이러한 한계를 개선하기 위해 본 연구에서는 Graph 기술을 활용한 향상된 RAG 시스템을 구현하였다. 이 시스템은 정보를 효율적으로 검색하고 활용할 수 있도록 설계되었다. 특히, LangGraph를 활용하여 검색된 정보의 신뢰성을 평가하고, 다양한 정보를 종합하여 보다 정확하고 향상된 답변을 생성할 수 있도록 하였다. 또한, 구체적인 작동 방식과 주요 구현 단계 및 사례를 구현 코드와 검증 내용을 통해 제시하여 Advanced RAG 기술에 대한 이해를 높였다. 이를 통해 Advanced RAG를 활용한 기업 내 서비스 구현에 실질적인 지침을 제공하여 기업들이 적극적으로 활용할 수 있도록 하는 데 의미가 있다.
글로벌 시장에서 Large Language Model(LLM)의 발전이 급속하게 이루어지며 활용도가 높아지고 있지만 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어려우며, 새로운 데이터로 업데이트하기 어렵다는 한계점이 있다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval- Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상시키려는 연구가 활발히 이루어지고 있다. 본 논문에서는 LLM의 검색 기능을 강화하기 위한 RAG의 연구 및 평가기법에 대한 최신 연구 동향을 소개하고 실제 산업에서 활용하기 위한 최적화 및 응용 사례를 소개하며 이를 바탕으로 향후 연구 방향성을 제시하고자 한다.
오픈 도메인 질의 응답은 사전학습 언어모델의 파라미터에 저장되는 정보만을 사용하여 답하는 질의 응답 방식과 달리 대량의 문서 등에서 질의에 대한 정답을 찾는 문제이다. 최근 등장한 Dense Retrieval은 BERT 등의 모델을 사용해 질의와 문서들의 벡터 연산으로 질의와 문서간의 유사도를 판별하여 문서를 검색한다. 이러한 Dense Retrieval을 활용하는 방안 중 RAG는 Dense Retrieval을 이용한 외부 지식과 인코더-디코더 모델에 내재된 지식을 결합하여 성능을 향상시킨다. 본 논문에서는 RAG를 한국어 오픈 도메인 질의 응답 데이터에 적용하여 베이스라인에 비해 일부 향상된 성능을 보임을 확인하였다.
Recently, LLM (Large Language Model), a rapidly developing generative AI technology, is receiving much attention in the smart construction field. This study proposes a methodology for implementing an knowledge expert system by linking BIM (Building Information Modeling), which supports data hub functions in the smart construction domain with LLM. In order to effectively utilize LLM in a BIM expert system, excessive model learning costs, BIM big data processing, and hallucination problems must be solved. This study proposes an LLM-based BIM expert system architecture that considers these problems. This study focuses on the RAG (Retrieval-Augmented Generation) document generation method and search algorithm for effective BIM data retrieval, with the goal of implementing an LLM-based BIM expert system within a small GPU resource. For performance comparison and analysis, a prototype of the designed system is developed, and implications to be considered when developing an LLM-based BIM expert system are derived.
생성형 AI 시장의 급속한 성장과 국내 기업과 기관의 큰 관심에도 불구하고, 부정확한 정보제공과 정보유출의 우려가 생성형 AI 도입을 저해하는 주된 요인으로 나타났다. 이를 개선하기 위해 본 논문에서는 검색-증강 생성(Retrieval-Augmented Generation, RAG) 구조 기반의 질의응답시스템을 설계·구현하였다. 제안 방법은 한국어 문장 임베딩을 사용해 지식 데이터베이스를 구축하고, 최적화된 검색으로 질문 관련 정보를 찾아 생성형 언어 모델에게 제공된다. 또한, 이용자가 지식 데이터 베이스를 직접 관리하여 변경되는 업무 정보를 효율적으로 업데이트하도록 하고, 시스템이 폐쇄망에서 동작할 수 있도록 설계하여 기업의 기밀 정보의 유출 가능성을 낮추었다. 국내 기업 등 조직에서 생성형 AI를 도입하고 활용하고자 할 때 본 연구가 유용한 참고자료가 되길 기대한다.
본 논문은 RAG(Retrieval-Augmented Generation) End2End의 리소스(Resource) 과부하 문제를 해결하는 동시에 모델 성능을 향상 시키기 위해 PEFT(Parameters-Efficient Fine-Tuning)기술인 LoRA(Low Rank Adaptation)적용에 관한 연구이다. 본 논문에서는 RAG End2End 모델의 파라미터 값과 개수를 유지하면서, LRM(Low Rank Matrices)을 이용하여 추가적인 파라미터만을 미세 조정하는 방식으로, 전반적인 모델의 효율성을 극대화하는 방안을 제시하였다. 본 논문에서 다양한 도메인에 데이터 셋에 대한 제안 방식의 성능을 검증하고자 Conversation, Covid-19, News 데이터 셋을 사용하였다. 실험결과, 훈련에 필요한 파라미터의 크기가 약 6.4억개에서 180만개로 감소하였고, EM(Exact Match)점수가 유사하거나 향상되었다. 이는 LoRA를 통한 접근 법이 RAG End2End 모델의 효율성을 개선할 수 있는 효과적인 전략임을 증명하였다.
This study integrates Rivet and Retrieved Augmented Generation (RAG) technologies to enhance automated report generation, addressing the challenges of large-scale data management. We introduce novel algorithms, such as Dynamic Data Synchronization and Contextual Compression, expected to improve report generation speed by 40% and accuracy by 25%. The application, demonstrated through a model corporate entity, "Company L," shows how such integrations can enhance business intelligence. Empirical validations planned will utilize metrics like precision, recall, and BLEU to substantiate the improvements, setting new benchmarks for the industry. This research highlights the potential of advanced technologies in transforming corporate data processes.
대규모 언어 모델의 발전은 텍스트 생성 및 정보 제공 분야에서 큰 진전을 이루었으며 사용자와의 원활한 소통을 가능하게 했다. 그러나 언어 모델은 특화된 정보 제공에 한계를 가지며 때때로 부정확한 정보를 생성할 수 있다. RAG(Retrieval-Augmented Generation) 기법은 이러한 한계를 극복하기 위해 제안되었다. 본 연구에서는 RAG 의 답변품질과 효율성을 높이기 위해 외부 문서 정보와 단어 단위로 카테고리화된 인덱싱 데이터 세트를 함께 제공하여 보다 정확하고 신뢰성 있는 문서 생성을 가능하게 하는 접근법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.