• Title/Summary/Keyword: Retopology

Search Result 4, Processing Time 0.02 seconds

The Study to Improve Re-topology Efficiency Between Analyzing Software and Making Examples of Different Types of 3D Models (리토폴로지 효율성 향상을 위한 소프트웨어의 비교분석 및 유형별 3D 모델링 사례 제작)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.9-25
    • /
    • 2020
  • As laser scan and photogrammetry are extensively applied to 3D modeling, the Retopology has become a critically important part in the 3D modeling process. However, abundant time would be wasted if the wrong method for retopology is employed. This paper aims to select the most suitable method and software for retopology for different types of models so as to increase the effectiveness of 3D modeling. In this paper, retopology is divided into three types according to the existed software for retopology in the market: manual, automatic and wrapping type, all of which are investigated by their characteristics of retopology and software in which they are applied individually. Then case production is employed on Static Mesh Skeletal Mesh and Hard Surface Modeling by the above mentioned three methods. The advantages and disadvantages of the software in which the above three methods can be applied are summed up, and the manual type produces good results, the automatic type is fast, and the wrapping type requires a pre-existing base mesh and the most suitable method for retopology for each type of 3D models is demonstrated. This paper provides reference for retopology and increases the effectiveness of 3D modeling.

A Study on Effective Methods of Polygon Modeling through Modeling Process-Related System (모델링 공정 연계 시스템을 통한 효율적 폴리곤 모델링 기법에 대한 탐구)

  • Kim, Sang-Don;Lee, Hyun-Seok
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.143-158
    • /
    • 2014
  • In the modeling processes of 3D computer animation, methods to build optimal work conditions to realize real forms for more efficient works have been advanced. Digital sculpting software, published in 1999, ZBrush has been positioned as an essential factor in character model work requiring of realistic descriptions through different manufacturing methods from previous modeling work processes and easy shape realization. Their functional areas are expanding. So, in this production case paper, as a method to product more optimized animation character models, the efficiency of production method linking digital sculpting software (Z-Brush) and animation production software (Maya) was deliberated and its consequences and implications are suggested. To this end, first the technical features of polygon modeling and Retopology were reviewed. Second, based on it, the efficiency of animation character modeling work processes through step linking ZBrush and Maya suggested in this paper was analyzed. Third, based on the features drawn before, in order to prove the hypothesis on modeling optimization method suggested in this paper, the production process of character Dumvee from a short animation film, 'Cula & Mina' was analyzed as an example. Through this study, it was found that technical approach easiness and high level of completion could be realized through two software linked work processes. This study is considered to be a reference for optimizing production process of related industries or modeling-related classes by deliberating different modeling process linked systems.

Precision comparison of 3D photogrammetry scans according to the number and resolution of images

  • Park, JaeWook;Kim, YunJung;Kim, Lyoung Hui;Kwon, SoonChul;Lee, SeungHyun
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.108-122
    • /
    • 2021
  • With the development of 3D graphics software and the speed of computer hardware, it is an era that can be realistically expressed not only in movie visual effects but also in console games. In the production of such realistic 3D models, 3D scans are increasingly used because they can obtain hyper-realistic results with relatively little effort. Among the various 3D scanning methods, photogrammetry can be used only with a camera. Therefore, no additional hardware is required, so its demand is rapidly increasing. Most 3D artists shoot as many images as possible with a video camera, etc., and then calculate using all of those images. Therefore, the photogrammetry method is recognized as a task that requires a lot of memory and long hardware operation. However, research on how to obtain precise results with 3D photogrammetry scans is insufficient, and a large number of photos is being utilized, which leads to increased production time and data capacity and decreased productivity. In this study, point cloud data generated according to changes in the number and resolution of photographic images were produced, and an experiment was conducted to compare them with original data. Then, the precision was measured using the average distance value and standard deviation of each vertex of the point cloud. By comparing and analyzing the difference in the precision of the 3D photogrammetry scans according to the number and resolution of images, this paper presents a direction for obtaining the most precise and effective results to 3D artists.

Reconstruction Of Photo-Realistic 3D Assets For Actual Objects Combining Photogrammetry And Computer Graphics (사진측량과 컴퓨터 그래픽의 결합을 통한 실제 물체의 사실적인 3D 에셋 재건)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.147-161
    • /
    • 2021
  • Through photogrammetry techniques, what current researches can achieve at present is rough 3D mesh and color map of objects, rather than usable photo-realistic 3D assets. This research aims to propose a new method to create photo-realistic 3D assets that can be used in the field of visualization applications. The new method combines photogrammetry with computer graphics modeling. Through the description of the production process of three objects in the real world - "Bullet Box", "Gun" and "Metal Beverage Bottle," it introduces in details the concept, functions, operating skills and software packages used in the steps including the photograph object, white balance, reconstruction, cleanup reconstruction, retopology, UV unwrapping, projection, texture baking, De-Lighting and Create Material Maps. In order to increase the flexibility of the method, alternatives to the software packages are also recommended for each step. In this research, 3D assets are produced that are accurate in shape, correct in color, easy to render and can be physically interacted with dynamic lighting in texture. The new method can obtain more realistic visual effects at a faster speed. It does not require large-scale teams, expensive equipment and software packages, therefore it is suitable for small studios and independent artists and educational institutions.