• Title/Summary/Keyword: Retinoid

Search Result 74, Processing Time 0.029 seconds

Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

  • Wang, Yan;Xiao, Li-Hua;Zhao, Xiao-Ling;Liu, Yi-Ping;Zhu, Qing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1075-1081
    • /
    • 2014
  • CRBP1 (cellular retinol binding protein 1) and CRBP3 (cellular retinol binding protein 3), are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE), age at first egg (AFE), weight at first egg (WFE) and total number of eggs with 300 age (EN). The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken.

A Case Report of Korean Medicine Treatment for Adult-type Pityriasis Rubra Pilars (성인형 모공성 홍색 비강진에 대한 한방치료 증례 보고 1례)

  • Jeon, Sang-woo;Kang, Sei-young
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.5
    • /
    • pp.787-799
    • /
    • 2020
  • Objectives: Pityriasis rubra pilaris (PRP) is a rare papulosquamous disorder with unknown etiology. Studies on adults have not been conducted yet in Korean medicine. We report the progress of Korean medicine treatment for adult-type pityriasis rubra pilaris. Methods: A 62-year-old female patient was diagnosed with PRP in June 2019. After the diagnosis of PRP, retinoid treatment was continued for about 6 months, and then the drug was switched to an oral immunosuppressant. However, the patient's symptoms did not improve, but instead worsened. The patient was treated with Mihudeungsikjang-tang and acupuncture therapy. We evaluated her treatment progress based on the Dermatology Life Quality Index (DLQI), a visual analogue scale (VAS), and the changes in the patient's subjective symptoms. Results: After Korean medicine treatment, the DLQI and VAS scores improved from 18 points to 16 points and from 6 points to 4 points, respectively. The whole-body itching and scaling were reduced by 30% compared to pretreatment. The itching and pain in the neck, which had been severely symptomatic, decreased by 50%. The pain and dysesthesia in the upper and lower extremities disappeared, but the erythema still remained. Conclusions: Conventional treatments for PRP have limitations due to adverse effects and difficulty in treating refractory forms. Korean medicine treatment is worth considering as it can complement the limitations of conventional treatments, although more studies will be needed.

The Modulation of Squamous Cell Differentiation by Retinoids in Human Squamous Cell Carcinoma Xenografts (Nude Mouse 에 이종이식한 두경부 편평상피세포암의 분화에 대한 Retinoids의 작용)

  • Kim, Sang-Yoon;Yoo, Seung-Joo;Yoo, Keun-Sik;Joo, Joon-Bum;Choi, Doo-Yung;Nam, Soon-Yuhl
    • Korean Journal of Bronchoesophagology
    • /
    • v.5 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • Objectives : To analyze the effect of retinoids on the differentiation in HNSCC xenografts. Materials and Methods : RA (20mg/kg) or 13-cis-RA (60mg/kg) was orally administered once in a day for 30 days in the xenograft model we prepared using athymic nude mice with AMCHN-4 and -6. We carried out H & E staining and immunohistochemical staining with the monoclonal antibody against involucrin and cytokeratin 10. Results : Both RA and 13-cis-RA were found to suppress the differentiation of AMC-HN-4. Interestingly, RA enhanced the differentiation of AMC-HN-6, although 13-cis RA did not exhibit any effect on the differentiation. These results suggest that in vivo effect of retinoids on the HNSCC growth and differentiation might be various. Retinoids-induced P450 in AMC-HN-6 might be one of the mechanisms to explain the reason why the retinoids exhibit various functions in the HNSCC.

  • PDF

Inhibitory Effect of Retinoids on Alkaline Phosphatase Isoenzymes Activity in Human Serum

  • Kim, Seung Hee;Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • Changes in the activity of alkaline phosphatase (ALP) isoenzymes and isoforms in human serum have a major diagnostic value, therefore the regulation of ALP activities is a valuable target for therapeutic interventions. To assess the pharmacological activity of retinoids, i.e., all-trans retinoic acid and 13-cis retinoic acid, their tissue-specific inhibitory effect on human serum ALP activity was elucidated by chemical inhibition methods, heat-sensitive inactivation, and wheat-germ lectin precipitation test. Retinoids showed significant inhibition of the total ALP activity in human serum at a concentration of 5 mM. All-trans retinoic acid (5 mM) and 13-cis retinoic acid (5 mM) inhibited ALP activities by up to 12% and 15%, respectively, compared to that by guanidine hydrochloride (200 mM). L-phenylalanine (100 mM) and urea (30 mM) had no further inhibitory effect on ALP activities in human serum pretreated with retinoids (5 mM). Retinoids significantly inhibited ALP activities by up to 20% compared with that of tetramisole (30 mM). The ALP activities in retinoid-pretreated serum remained unchanged after the heat inactivation process. These results suggest that retinoids are inhibitors of the intestinal ALP isoenzyme. Remarkably, retinoids revealed potent inhibitory activities against ALP in wheat-germ lectin precipitant serum, indicating that they also function as inhibitors of the bone ALP isoform. The results show that retinoids inhibit the specific tissue-derived human serum ALP activities, moreover, the inhibitory effect of retinoids against bone ALP activity suggests their clinical utility as monitoring and prevention of metastasis of bone cancer.

Endocrine Disrupting Organotin Compounds are Potent Inducers of Imposex in Gastropods and Adipogenesis in Vertebrates

  • Iguchi, Taisen;Katsu, Yoshinao;Horiguchi, Toshihiro;Watanabe, Hajime;Blumberg, Bruce;Ohta, Yasuhiko
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The persistent and ubiquitous environmental contaminant, tributyltin chloride (TBT), induces not only imposex in gastropods but also the differentiation of adipocytes in vitro and increases adipose mass in vivo in vertebrates. TBT is a nanomolar affinity ligand for retinoid X receptor (RXR) in the rock shell(Thais clavigera) and for both the RXR and the peroxisome proliferator activated receptor $\gamma(PPAR\gamma)$ in the amphibian (Xenopus laevis), mouse, and human. The molecular mechanisms underlying induction of imposex by TBT have not been clarified, though several hypotheses are proposed. TBT promotes adipogenesis in the murine 3T3-L1 cell model and perturbs key regulators of adipogenesis and lipogenic pathways in vivo primarily through activation of RXR and $PPAR\gamma$. Moreover, in utero exposure to TBT leads to strikingly elevated lipid accumulation in adipose depots, liver, and testis of neonate mice and results in increased adipose mass in adults. In X. laevis, ectopic adipocytes form in and around gonadal tissues following organotin, RXR or $PPAR\gamma$ ligand exposure. TBT represents the first example of an environmental endocrine disrupter that promotes adverse effects from gastropods to mammals.

Cloning, Expression, and Regulation of Bovine Cellular Retinoic Acid-binding Protein-II (CRABP-II) during Adipogenesis

  • Jeong, Young Hee;Lee, Sang Mi;Kim, Hye-Min;Park, Hyo Young;Yoon, Duhak;Moon, Seung Ju;Hosoda, Akemi;Kim, Dong-Ho;Saeki, Shigeru;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1551-1558
    • /
    • 2008
  • The mammalian cellular retinoic acid-binding proteins, CRABP-I and CRABP-II, bind retinoic acid which acts as an inducer of differentiation in several biological systems. To investigate a possible role for CRABP-II in bovine adipogenesis, we have cloned bovine CRABP-II cDNA and the coding region for CRABP-I. The predicted amino acid sequences of CRABP-II were highly conserved among several animal species (human, mouse, and rat at 97%, 93%, and 93%, respectively). The expression pattern of bovine CRABP-II was examined in greater details by applying RT-PCR to various bovine tissues. CRABP-II mRNA was expressed in most adipose-containing tissues. Moreover, the expression of CRABP-I and -II mRNA dramatically increased during the differentiation of adipocytes from bovine intramuscular fibroblast-like cells. The effects of retinoic acid on adipocyte differentiation of bovine intramuscular fibroblast-like cells were concentration-dependent. Retinoic acid activated the formation of lipid droplets at a level of 1 nM, whereas inhibition was observed at a level of $1{\mu}M$. CRABP-I gene was up-regulated and CRABP-II gene down-regulated by retinoic acid during adipocyte differentiation. These results suggest that CRABPs may play an important role in the regulation of intracellular retinoic acid concentrations during adipogenesis.

Preparation of Molecularly Imprinted Poly(methacrylic acid) and Its HPLC Separation Characteristics of Retinoids (분자각인 Poly(methacrylic acid)의 제조 및 레티노이드 화합물의 HPLC 분리 특성)

  • 남기훈;권영돈;김덕준
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.710-717
    • /
    • 2002
  • Molecularly imprinted polymers were prepared in particle forms by crosslinking methacrylic acid (MAA)) using all trans-retinoic acid as a template. The HPLC column packed with the prepared molecular imprinted polymers showed high capability in separation of retinoid derivatives. The column capacity factor and selectivity increased with increasing MAA to template ratio when the incorporated template amount was fixed, as it statistically generated more binding sites between host molecules and template. Molecularly imprinted polymer particles prepared via an emulsion polymerization method were round-shaped and their sizes were more uniformly distributed, but their separation capability was inferior to those obtained by solution polymerization method. It was presumably because the loss of interaction strength between MAA and the template due to hydrogen bonding either between MAA and water or between template and water during the synthesis of molecularly imprinted polymers.

Anti-skin-aging effects of Paeonia Suffruticosa Andrews on maintaining skin collagen in STZ-induced diabetic rats and inhibiting MMP-1 systhesis in human skin fibroblasts (당뇨흰쥐의 콜라겐 감소 및 인간 피부 섬유아세포의 MMP-1 증가에 대한 목단피(牧丹皮)의 항피부노화 효과)

  • Kim, Kyung-Jin;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Objective : Skin aging is commonly observed in patients with diabetes mellitus, which can be accessed by the amount of skin collagen and matrix metalloproteinase-1 (MMP-1). In the present study, anti-skin-aging effects of Root Cortex of Paeonia Suffruticosa Andrews (PSA), which has been widely used to treat diabetes mellitus, are investigated. Methods : Streptozotocin (STZ) was intraperitoneally injected to rats to induce diabetes. Body weights, feed intake, organ weights, blood glucose, and other biochemical index are determined in both normal and diabetic rats. In order to study the effect of PSA on skin aging, the amount of skin collagen was measured in diabetic rats after PSA treatments. Also, MMP-1 synthesis in UVB-irradiated human skin fibroblasts was investigated. Results : 1. When PSA was administered to STZ-induced diabetic rats, feed intake was significantly increased and blood glucose and total cholesterol were decreased in a dose-dependent manner. However, there are no differences in individual organ weights, GOT, and GPT. 2. A decrease of skin collagen in diabetic rats was significantly suppressed when PSA was treated. 3. PSA also inhibited MMP-1 synthesis in UVB-irradiated normal human skin fibroblasts, similar to retinoid, a well-known effective anti-skin-aging substance. Conclusion: PSA suppressed a collagen decrease in diabetic rats and inhibited MMP-1 synthesis in UVB-irradiated human skin fibroblasts. Therefore, the treatment of PSA is very effective to slow down the skin aging process.

  • PDF

T0901317 as an Inhibitor of Transcriptional Activation of Constitutive Androstane Receptor (CAR) (Constitutive androstane receptor (CAR)의 전사활성 저해제로서의 T0901317)

  • Kim, Hyun-Ha;Seol, Won-Gi
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.481-485
    • /
    • 2011
  • T0901317 is a potent synthetic ligand for liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor superfamily that functions as a transcription factor. However, T0901317 has been also reported to modulate the activity at least four other nuclear receptors (NRs), acting as agonists for farnesoid X receptor (FXR, NR1H4) and pregnane X receptor (PXR, NR1I2) and as antagonists for androgen receptor (AR, NR3C4) and retinoid-related orphan receptor-${\alpha}$ (ROR-${\alpha}$, NR1F1). We report here that T0901317 can also function as an inhibitor for constitutive androstane receptor (CAR, NR1I3). Since CAR is a major player of xenobiotic and cholesterol metabolism in the liver, along with PXR, FXR and LXR, which are reported to be regulated by T0901317, this further complicates the interpretation of potential results with T0901317 in liver cells.

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik;Park, Hee-Sae;Lee, Young Chul
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.842-852
    • /
    • 2018
  • Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.