• Title/Summary/Keyword: Retinal cell

Search Result 134, Processing Time 0.031 seconds

Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model

  • Park, Un-Chul;Cho, Myung-Soo;Park, Jung-Hyun;Kim, Sang-Jin;Ku, Seung-Yup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.216-221
    • /
    • 2011
  • Objective: To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. Methods: The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells ($10^5$ cells/5 ${\mu}L$) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. Results: The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. Conclusion: Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease.

Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina

  • Hye Mi Cho;Sang Jun Lee;Se-Young Choung
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • Background: Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods: To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results: GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-II, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions: GBE could be a potential agent to prevent dry AMD and progression to wet AMD.

Diversity and Function of Retinal-binding Protein in Photosynthetic Microbes

  • Jung, Kwang-Hwan
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.64-66
    • /
    • 2005
  • Photosynthetic microbes possess a wealth of photoactive proteins including chlorophyll-based pigments, phototropin-related blue light receptors, phytochromes, and cryptochromes. Surprisingly, recent genome sequencing projects discovered additional photoactive proteins, retinal-based rhodopsins, in cyanobacterial and algal genera. Most of these newly found rhodopsin genes and retinal synthase have not been expressed and their functions are unknown. Analysis of the Anabaena and Chlamyrhodopsin with retinal synthase revealed that they have sensory functions, which, based on our work with haloarchaeal rhodopsins, may use a variety of signaling mechanisms. Anabaena rhodopsin is believed to be sensory, shown to interact with a soluble transducer and the putative function is either chromatic adaptation or circadian rhythm. Chlamydomonas rhodopsins are involved in phototaxis and photophobic responses based on electrical measurements by RNAi experiment. In order to analyze the protein, we developed a sensory rhodopsin expression system in E. coli. The opsin in E. coil bound endogenous all-trans retinal to form a pigment and can be observed on the plate. Using this system we could identify retinal synthase in Anabaena PCC 7120. We conclude that Anabaena D475 dioxygenase functions as a retinal synthase to the Anabaena rhodopsin in the cell.

  • PDF

Mind Bomb-Binding Partner RanBP9 Plays a Contributory Role in Retinal Development

  • Yoo, Kyeong-Won;Thiruvarangan, Maivannan;Jeong, Yun-Mi;Lee, Mi-Sun;Maddirevula, Sateesh;Rhee, Myungchull;Bae, Young-Ki;Kim, Hyung-Goo;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.271-279
    • /
    • 2017
  • Ran-binding protein family member, RanBP9 has been reported in various basic cellular mechanisms and neuropathological conditions including schizophrenia. Previous studies have reported that RanBP9 is highly expressed in the mammalian brain and retina; however, the role of RanBP9 in retinal development is largely unknown. Here, we present the novel and regulatory roles of RanBP9 in retinal development of a vertebrate animal model, zebrafish. Zebrafish embryos exhibited abundant expression of ranbp9 in developing brain tissues as well as in the developing retina. Yeast two-hybrid screening demonstrated the interaction of RanBP9 with Mind bomb, a component of Notch signaling involved in both neurogenesis and neural disease autism. The interaction is further substantiated by co-localization studies in cultured cells. Knockdown of ranbp9 resulted in retinal dysplasia with defective proliferation of retinal cells, downregulation of neuronal differentiation marker huC, elevation of neural proliferation marker her4, and alteration of cell cycle marker p57kip2. Expression of the $M{\ddot{u}}ller$ glial cell marker glutamine synthase was also affected in knockdown morphants. Our results suggest that Mind bomb-binding partner RanBP9 plays a role during retinal cell development of zebrafish embryogenesis.

Dysfunction of Retinal Cell and Optic Nerve by Continuous Cerebroventricular Infusion of Glucosamine

  • Jang, So-Yong;Han, Inn-Oc;Jun, Gyo;Oh, Sei-Kwan
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.362-369
    • /
    • 2009
  • We have investigated the effect of glucosamine on the retinal cells after continuous infusion into cerebroventricle by using osmotic minipump to avoid peripheral effect. Continuous intracerebroventricular (i.c.v) infusion of glucosamine with the rate of 0.1 ${\mu}mol$/10 ${\mu}l$/hr for 7 days resulted in morphological changes of the optic nerve in electron microscopic level as well as morphological changes of the retina in light microscopic level. Retinal sections were immunostained for the detection of morphological changes of astrocytes. GFAP immunoreactivity appeared not only in the Muller cells but also many of the radial processes of Muller cells. The optic nerve showed deformed axon and slight lamellar separation of myelin sheath after continuous infusion of glucosamine in observing with electron microscope. Interestingly, vacuoles were observed in deformed axons and retinal layers were folded and detached. These results suggested that glucosamine plays a role in induction of morphological dysfunction in retina and optic nerves.

Comparison of Retinal Waveform between Normal and rd/rd Mouse (정상 마우스와 rd/rd 마우스의 망막파형 비교)

  • Ye, Jang-Hee;Seo, Je-Hoon;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa or age-related macular degeneration. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we investigated differences of the retinal waveforms in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: 50 $k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. In normal mice (C57BL/6J strain) of postnatal day 28, only short duration (<2 ms) retinal spikes were recorded. In rd/rd mice (C3H/HeJ strain), besides normal spikes, waveform with longer duration (~100 ms), the slow wave component was recorded. We attempted to understand the mechanism of this slow wave component in degenerate retina using various synaptic blockers. We suggest that stronger glutamatergic input from bipolar cell to the ganglion cell in rd/rd mouse than normal mouse contributes the most to this slow wave component. Out of many degenerative changes, we favor elimination of the inhibitory horizontal input to bipolar cells as a main contributor for a relatively stronger input from bipolar cell to ganglion cell in rd/rd mouse.

  • PDF

A Bio-Inspired Cell-Microsystem to Manipulate and Detect Living Cells

  • Lim, Jung-Min;Byun, Sang-Won;Park, Tai-Hyun;Seo, Jong-Mo;Yoo, Young-Suk;Hum Chung;Dong-il
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.160-164
    • /
    • 2004
  • In this study, we demonstrate for the first time a bio-inspired Cell-Microsystem to manipulate and detect living cells. Cultured retinal pigment epithelial cell line (ARPE-19) was directed to grow in a pre-defined Cell-Microsystem. The three-dimensional micropillars of 5 ${\mu}{\textrm}{m}$ in height and diameter of the Cell-Microsystem were fabricated. Inhibited DNA synthesis and transformed cell morphology were observed throughout the culture period. The demonstration of manipulating and detecting living cells by the surface topography is a new approach, and it will be very useful for the future design of cell-based biosensors and bioactuators.

Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording (다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석)

  • Cho Hyun Sook;Jin Gye-Hwan;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • Retinal ganglion cells transmit visual scene as an action potential to visual cortex through optic nerve. Conventional recording method using single intra- or extra-cellular electrode enables us to understand the response of specific neuron on specific time. Therefore, it is not possible to determine how the nerve impulses in the population of retinal ganglion cells collectively encode the visual stimulus with conventional recording. This requires recording the simultaneous electrical signals of many neurons. Recent advances in multi-electrode recording have brought us closer to understanding how visual information is encoded by population of retinal ganglion cells. We examined how ganglion cells act together to encode a visual scene with multi-electrode array (MEA). With light stimulation (on duration: 2 sec, off duration: 5 sec) generated on a color monitor driven by custom-made software, we isolated three functional types of ganglion cell activities; ON (35.0$\pm$4.4%), OFF (31.4$\pm$1.9%), and ON/OFF cells (34.6$\pm$5.3%) (Total number of retinal pieces = 8). We observed that nearby neurons often fire action potential near synchrony (< 1 ms). And this narrow correlation is seen among cells within a cluster which is made of 6~8 cells. As there are many more synchronized firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of ganglion cells.

  • PDF

Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis

  • Noh, Hyuna;Park, Soochul
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.136-140
    • /
    • 2016
  • Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(${\alpha}$)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina-particularly the nasal and temporal regions-is markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina.