• Title/Summary/Keyword: Retinal cell

Search Result 133, Processing Time 0.032 seconds

Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases

  • Jeon, Sohee;Oh, Il-Hoan
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.193-199
    • /
    • 2015
  • Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases. [BMB Reports 2015; 48(4): 193-199]

Reconstruction of Receptive Field of Retinal Ganglion Cell Using Matlab (Matlab을 이용한 망막신경절세포 감수야 구성)

  • Ye, Jang-Hee;Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • A retinal ganglion cell's receptive field is defined as that region on the retinal surface In which a light stimulus will produce a response. A retinal ganglion cell peers out at a small patch of the visual scene through its receptive field and encodes local features with action potentials that pass through the optic nerve to higher centers. Therefore, defining the receptive field of a retinal ganglion cell is essential to understand the electrical characteristics of a ganglion cell. Distribution of receptive fields over retinal surface provides us an Insight how the retinal ganglion cell processes the visual scene. In this paper, we provide the details how to reconstruct the receptive field of a retinal ganglion cell. We recorded the ganglion cell's action potential with multielectrode array when the random checkerboard stimulus was applied. After classifying the retinal waveform Into ON-cell, OFF-cell, ON/OFF-cell, we reconstructed the receptive field of retinal ganglion cell with Matlab. Here, we show the receptive fields of ON-cell and OFF-cell.

  • PDF

Protective effect of Oxya chinensis sinuosa methanol extract on UVB-induced damage in human retinal pigment epithelial cells

  • Hyun Jung Lim;Sohyun Park;Joon Ha Lee;In-Woo Kim;HaeYong Kweon;Minchul Seo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • The human eye, constantly exposed to solar radiation, can be damaged by UV radiation. In particular, ultraviolet B (UVB)-induced damage plays an important role in retinal degeneration and cell aging. In this study, we investigated the protective effects of the methanol extract of Oxya chinensis sinuosa (OCM), an edible insect known for its high protein content (64.2%), and various pharmacological effects, on human retinal pigment epithelial cells. ARPE-19 cells were treated with OCM and subsequently UVB irradiated. Our results showed that OCM effectively attenuates UVB-induced cell damage by reducing MAPK phosphorylation (JNK and p38 MAPK). Additionally, OCM increased the phosphorylation of Akt, and cell cycle regulators, including p21 and p27, in a dose-dependent manner. Moreover, OCM treatment increased ARPE-19 cell proliferation by activating the S6K1/S6 pathway. This study suggests that OCM prevents UVB-induced retinal cell damage by increasing cell proliferation via ROS reduction, suggesting its potential as a functional therapeutic superfood against retinal cell damage.

Functional Connectivity Map of Retinal Ganglion Cells for Retinal Prosthesis

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.307-314
    • /
    • 2008
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Among the many issues for prosthesis development, stimulation encoding strategy is one of the most essential electrophysiological issues. The more we understand the retinal circuitry how it encodes and processes visual information, the greater it could help decide stimulation encoding strategy for retinal prosthesis. Therefore, we examined how retinal ganglion cells (RGCs) in in-vitro retinal preparation act together to encode a visual scene with multielectrode array (MEA). Simultaneous recording of many RGCs with MEA showed that nearby neurons often fired synchronously, with spike delays mostly within 1 ms range. This synchronized firing - narrow correlation - was blocked by gap junction blocker, heptanol, but not by glutamatergic synapse blocker, kynurenic acid. By tracking down all the RGC pairs which showed narrow correlation, we could harvest 40 functional connectivity maps of RGCs which showed the cell cluster firing together. We suggest that finding functional connectivity map would be useful in stimulation encoding strategy for the retinal prosthesis since stimulating the cluster of RGCs would be more efficient than separately stimulating each individual RGC.

Improved Ultrastructural Preservation of Retinal Cells in Drosophila melanogaster (초고압동결장치를 이용한 초파리 레티나 세포의 향상된 미세구조)

  • Mun, Ji-Young;Park, Se-Jin;Han, Sung-Sik
    • Applied Microscopy
    • /
    • v.37 no.3
    • /
    • pp.175-183
    • /
    • 2007
  • The Drosophila retinal cell is widely used to study cell development and cell signaling processes. In the past decades, conventional chemical fixation had been used to study the structure of retinal cells in Droscphila. Rapid freezing methods are superior to chemical fixation methods due to their fixation speed. Some Drosophila tissues, such as the eyes, should not be freezed due to their surrounding cuticle layer. Therefore, in the case of the Drosophila retina, the benefits of high pressure freezing and freeze substitution (HPF-FS) had not been verified. In this study, a retinal cell from Drosophila melanogaster had been studied by using the HPF-FS method. Compared to chemical fixation, the preservation of the cytoplasm in the HPF-FS sample was improved on the whole. The HPF-FS cell membranes were smoother than that of chemical fixation. In addition, HPF-FS preserved the mitochondria structures very well. These results of the present study suggest that HPF-FS is superior to other fixation methods for the preservation of the retinal cell structure.

Stem Cell Based Strategies for the Treatment of Degenerative Retinal Diseases (망막변성질환에서의 줄기세포 기반치료)

  • Park, Jung-Hyun;Ku, Seung-Yup;Cho, Myung-Soo;Lee, Hak-Sup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • Stem-cell therapy has the potential to improve vision in patients with untreatable retinal disease. Various types of cell source including fetal, embryonic and adult stem cells, intrinsic and extrinsic factors for differentiation into retinal progenitors and transplantation mode were discussed in this review. Experimental approaches have successfully induced photoreceptor precursor cells and retinal pigment epithelium. Stem-cell-based therapy is a promising treatment to restore vision in patients with retinal disease, in spite of the challenges.

Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

  • Ha, Jung Min;Jin, Seo Yeon;Lee, Hye Sun;Shin, Hwa Kyoung;Lee, Dong Hyung;Song, Sang Heon;Kim, Chi Dae;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.533-538
    • /
    • 2016
  • Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were significantly reduced in mice lacking eNOS. Retinal endothelial cell proliferation was significantly blocked in mice lacking eNOS, and EMG-2-induced endothelial cell sprouting was significantly reduced in aortic vessels isolated from eNOS-deficient mice. Finally, pericyte recruitment to endothelial cells and vascular smooth muscle cell coverage to blood vessels were attenuated in mice lacking eNOS. Taken together, we suggest that the endothelial cell function and blood vessel maturation are regulated by eNOS during retinal angiogenesis.

Effects of Bisphosphonates on Glucose Transport in a Conditionally Immortalized Rat Retinal Capillary Endothelial Cell Line (TR-iBRB Cells)

  • Lee, Na-Young;Park, Hyun-Joo;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.94-98
    • /
    • 2016
  • The objective of the present study was to elucidate the effect of bisphosphonates, anti-osteoporosis agents, on glucose uptake in retinal capillary endothelial cells under normal and high glucose conditions. The change of glucose uptake by pre-treatment of bisphosphonates at the inner blood-retinal barrier (iBRB) was determined by measuring cellular uptake of $[^3H]3$-O-methyl glucose (3-OMG) using a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB cells) under normal and high glucose conditions. $[^3H]3$-OMG uptake was inhibited by simultaneous treatment of unlabeled D-glucose and 3-OMG as well as glucose transport inhibitor, cytochalasin B. On the other hand, simultaneous treatment of alendronate or pamidronate had no significant inhibitory effect on $[^3H]3$-OMG uptake by TR-iBRB cells. Under high glucose condition of TR-iBRB cells, $[^3H]3$-OMG uptake was increased at 48 h. However, $[^3H]3$-OMG uptake was decreased significantly by pre-treatment of alendronate or pamidronate compared with the values for normal and high glucose conditions. Moreover, geranylgeraniol (GGOH), a mevalonate pathway intermediate, increased the uptake of $[^3H]3$-OMG reduced by bisphosphonates pre-treatment. But, pre-treatment of histamine did not show significant inhibition of $[^3H]3$-OMG uptake. The glucose uptake may be down regulated by inhibiting the mevalonate pathway with pre-treatment of bisphosphonates in TR-iBRB cells at high glucose condition.

Effect of Stimulus Waveform of Biphasic Current Pulse on Retinal Ganglion Cell Responses in Retinal Degeneration (rd1) mice

  • Ahn, Kun No;Ahn, Jeong Yeol;Kim, Jae-Hyung;Cho, Kyoungrok;Koo, Kyo-In;Senok, Solomon S.;Goo, Yong Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.167-175
    • /
    • 2015
  • A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an $8{\times}8$ multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than $10{\mu}A$ and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to $500{\mu}s$($30{\mu}A$), changing the intensities (or duration) from 2 to $60{\mu}A$(60 to $1000{\mu}s$). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse.

Accurate Representation of Light-intensity Information by the Neural Activities of Independently Firing Retinal Ganglion Cells

  • Ryu, Sang-Baek;Ye, Jang-Hee;Kim, Chi-Hyun;Goo, Yong-Sook;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2009
  • For successful restoration of visual function by a visual neural prosthesis such as retinal implant, electrical stimulation should evoke neural responses so that the informat.ion on visual input is properly represented. A stimulation strategy, which means a method for generating stimulation waveforms based on visual input, should be developed for this purpose. We proposed to use the decoding of visual input from retinal ganglion cell (RGC) responses for the evaluation of stimulus encoding strategy. This is based on the assumption that reliable encoding of visual information in RGC responses is required to enable successful visual perception. The main purpose of this study was to determine the influence of inter-dependence among stimulated RGCs activities on decoding accuracy. Light intensity variations were decoded from multiunit RGC spike trains using an optimal linear filter. More accurate decoding was possible when different types of RGCs were used together as input. Decoding accuracy was enhanced with independently firing RGCs compared to synchronously firing RGCs. This implies that stimulation of independently-firing RGCs and RGCs of different types may be beneficial for visual function restoration by retinal prosthesis.