• 제목/요약/키워드: Retaining wall

검색결과 744건 처리시간 0.03초

보강토 옹벽에서 연결시스템의 영향성 평가 (Evaluation of Effect for Connector System in Reinforced Earth Retaining Wall)

  • 이준대;허열;안광국;이용준
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, in order to evaluate the effect of two types of connector systems in reinforced retaining wall, the centrifugal tests for the conventional connector and new settlement connector system were performed. In the centrifugal tests, the aluminum plate for the face was used and the aluminum foil was used as a reinforcement. The granite soil was adopted as a fill. As a result, The settlement reinforced retaining wall reached to the failure at 80g-level. In contrast, the conventional reinforced retaining wall was collapsed at 69g-level. It means that the settlement reinforced retaining wall has the stronger stability than the conventional reinforced retaining wall. In addition, it was shown that the settlement connector system is more effective to release the stress concentration occurred at the face of reinforced retaining wall than the conventional connector system.

옹벽 및 교대 신기술 특허 (New Patent Technology for Retaining Wall and Bridge Abutment)

  • 김경호;최정호;안정생;김낙겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.895-898
    • /
    • 2008
  • 본 연구는 최근 국내의 옹벽 및 교대의 신기술 특허 등록 동향을 조사하여 파악하며, 이들 신기술특허를 적절히 실제 옹벽 및 교대 공사에 적용하려는데 목적을 두고 있다. 본 연구에서 조사된 신기술옹벽으로는 PS강봉에 프리스트레스를 도입한 단면력 저감형 조립식 PC옹벽공법, Coupler-Tension 조립식 옹벽, 도로용 블록식 보강토옹벽, 균등침하를 유도할 수 있는 블록식 보강토옹벽이 있으며, 신기술 교대로는 시트파일을 이용한 교대의 시공공법, 일체식 복합교대 교량, 반 일체식 교대교량의 시공방법, 보강토 교대구조를 기술하였다.

  • PDF

상재하중 이격거리에 따른 다단식 보강토옹벽의 거동특성 분석 (Analysis of the Behavior of Tiered Reinforced Soil Retaining Wall Considering the Offset Distance by Surcharge Load)

  • 한중근;김지선;홍기권
    • 한국환경복원기술학회지
    • /
    • 제10권4호
    • /
    • pp.31-40
    • /
    • 2007
  • Recently, the scale in the field of reinforced soil retaining wall has been grown up like tiered reinforced soil retaining wall. However, there have been increasing number of collapse accidents and large scale of collapse. The design manual adopted in the construction fields have been inconsistent in tiered reinforced soil retaining wall. Therefore, this study performed finite element analysis on 90 cases and analyzed characteristic behavior of lower wall which was one of the effect factors on the stability of tiered reinforced soil retaining wall. The facing displacement of each walls and the behavior of the whole ground were interpreted by the numerical analysis depending on the lower offset distance by the upper wall as well as the upper offset distance by the surcharge load. The results showed that the behavior of tiered reinforced soil retaining wall was differed by condition of surcharge load and each offset distance was found to be important factor.

Strength Properties of Wooden Retaining Walls Manufactured with Pinus rigida Miller

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.140-147
    • /
    • 2011
  • The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/$m^2$, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.

모형실험에 의한 조립식 격자 옹벽의 거동 특성 (The Behavior Characteristics of Segmental Crib Retaining Wall by Model Test)

  • 김상수;신방웅;김용언;이재영;변동건
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.449-456
    • /
    • 1999
  • The concrete wall is the most useful of retaining structure which can obtain the engineering stability, but has problems that is not friendly with nature environment in a fine view, such as poor rear drainage, and shrinkage crack by temperature difference, etc. Because of this problems, the research for a segmental crib retaining wall has been performed. A segmental crib retaining wall is quickly and easily erected because is possible to be erected as the individual members, and is not sensitive to differential settlement and earthquakes. Also, it shows effective drainage and has a friendly advantage with nature environment because of being able to be planted with vines and shrubs in retaining walls The design of crib retaining walls has traditionally been based on classical soil mechanics theories. These theories, originally derived by Rankine(1857) and Coulomb(1776), assume that the wall acts as a rigid body. This assumption results in failure being predicted by either monolithic overturning or base sliding mechanisms. However, the wall consists of individual members which have been created a three dimensional grid. This grid confines an fill mass which becomes part of the wall. The filled wall resists the earth pressure with the same mechanism of classical gravity walls. Because of the flexibility of the individual segment, it allows relative movement between the individual members within the wall. The three dimensional flexible grid leads to stress redistribution when the wall is subjected to external or fill loads. Due to the flexibility and the stress redistribution, the failure of segmental crib wall consists of not only overturing and base sliding but the local deformation and the failure between the segmental members. It has been researched in the field that due to this flexibility and load redistribution, serviceability failure of segmental crib walls is unlikely to be due to overturning or base sliding. Therefore, in this study, the relative displacement appearance of retaining wall due to variation of inclination is measured to examine this behavior characteristics. Also, the behavior characteristics of retaining walls by surcharge load, and location of acting point of retaining wall rear, and the displacement characteristics and deflections are estimated about the existence and nonexistence of Rear Stretcher performing an role in transmitting earth pressure of Header and Stretcher organizing retaining walls. This research focuses on the characteristics due to the behavior of retaining walls. This research focuses on the characteristics due to the behavior of retaining walls.

  • PDF

APPLICATION OF WIRELESS INCLINOMETER FOR DISPLACEMENT MEASUREMENT OF TEMPORARY EARTH RETAINING PILE

  • Chi Hun In;Hong Chul Rhim
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.218-223
    • /
    • 2009
  • During the process of excavation for substructures of buildings, precise and constant measurements of retaining wall displacement is crucial for construction to be complete and safe. Currently an inclinometer is used to measure displacement around the perimeter of an excavation site. The existing inclinometer system requires an instrument to be placed inside pre-bored holes for each measurement with an typical interval of two weeks. This makes it difficult to obtain continuous displacement data, especially during a critical time such as rainy season in summer. Also, the existing inclinometer is placed at certain distance away from the retaining wall system itself. Thus, exact measurement of retaining wall movement is compromised because of the distance between the retaining wall and the inclinometer. This paper presents the development of wireless inclinometer system for the displacement measurement of retaining walls by being attached directly to the retaining wall. The result of the application of the developed systems are provided with advanced ubiquitous sensor network (USN) system features. The USN technique incorporated into the system enables users to monitor movement data from wherever possible and convenient such as construction manager's office on site or any other places connected through internet. The research work presented in this paper will provide a basis to save construction time and cost by preventing safe-related unexpected delay of construction due to the failure or collapse of retaining walls.

  • PDF

Green Wall 시스템의 설계 및 해석을 위한 기초연구 (A Basic Study for Design and Analysis of the Green Wall System)

  • 박시삼;김종민;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석 (Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles)

  • 손수원;임종철;서민수;홍석우
    • 한국지반신소재학회논문집
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 2021
  • 도심지에서는 공간 활용을 위해 구조물 하부 깊은 지하까지 구조물을 설치하고 있다. 그래서 구조물 건설 시, 지반에서 발생하는 토압을 방지하기 위해서 흙막이를 활용하고 있다. 굴착공사에 적용되던 흙막이가 건설기술의 발전으로 인해서 성토 공사나 옹벽 설치시에 가시설 낙석이나 산사태와 같은 위험 방지용으로도 이용되고 있다. 일반적으로 성토공사시 가시설 흙막이를 적용하는 경우는 기존에 존재하는 도로나 철도를 확장하는 경우이다. 그러므로 고속철도의 복선화 현장과 같은 성토공사에 적용되는 흙막이에 관한 연구가 필요하다. 본 연구에서는 일반적인 1열 H-pile 흙막이와 지주식 흙막이 2종류에 대해 수치해석을 하였으며, 고속철도의 단선지역에 성토하여 복선화하는 공사에 적용된 흙막이의 안정성을 분석하였다. 지주식 흙막이는 사면안정에 적용되는 억지 말뚝(이하 배면지주)을 흙막이 벽체(이하 전면지주)에 경사지게 결합한 공법이다. 분석결과, 지주식 공법은 동적하중이 적용되는 동안, 전면에만 H-plie이 설치된 타입에 비해 수평변위가 최대 19.0%만 발생하였다. 또한, 고속철의 운행속도가 느릴수록 변위가 많이 발생하였으며, 이 결과는 운행속도가 저속인 구간에서의 지반 설계시 더욱 주의가 필요하다는 것을 보여준다.

노반 토구조물로서의 이용을 위한 새로운 단섬유 복합보강토 옹벽구조 개발 (Development of Short-fiber Composite Reinforced Retaining Wall for Railroad Soil Structure)

  • 박영곤;박태순;장병욱;이영제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1014-1019
    • /
    • 2004
  • The development of both economical and consistent structure is strongly required for the whole reorganization of the railway network in Korea. Retaining wall is one of the major structures in the vicinity of the railway, which needs improving its external appearance and stability. Therefore, this study presents a new type of retaining wall, so called short-fiber composite reinforced retaining wall, as an alternative of retaining walls, which can be used for constructing the slope and roadbed soil structures. The results from real-scale test and dynamic numerical analysis for developed new one, which helps both the improvement of the external appearance and also the optimum use of the limited space near the railway, show excellent performance. On the basis of these results, it is judged that short-fiber composite reinforced retaining wall has the advantages of choosing the front wall freely and having a chance to use any low quality soil as backfill.

  • PDF

보강토옹벽의 사고사례에 관한 연구 (Reinforced Earth Retaining Wall of The Collapsed-A Case Study.)

  • 유충식;정혁상;이성우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF