• Title/Summary/Keyword: Retaining structures

Search Result 258, Processing Time 0.026 seconds

Rural areas, Vibration Stability Analysis of Wall and Retaining Wall of Low-rise Masonry Buildings (농촌지역 저층 조적조 건축물의 벽체 및 옹벽의 진동 안정 해석 - 전북 정읍시 ◯◯면 농촌지역 사례를 중심으로 -)

  • Lee, Deog-Yong;Kim, Il-Jung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.4
    • /
    • pp.59-66
    • /
    • 2014
  • This paper deals with vibration of plates with concentrated mass on elastic foundation. The object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on pasternak foundation. The Winkler parameter is varied with 10, $10^2$, $10^3$ and the shear foundation parameter is 5, 10. This paper is analyzed varying thickness by taper ratio. The taper ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0. And the Concentrated Mass is applied as P1, Pc, P2 respectively.

Compaction Induced Lateral Earth Pressures (뒷채움의 다짐에 의한 횡방향(橫方向) 토압(土壓))

  • Chung, Sung Gyo;Chung, In Joon;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.51-64
    • /
    • 1991
  • To evaluate the compaction - induced lateral earth pressure acting on retaining structures such as retaining walls, abutments, culverts, underground walls, etc., a new equation is developed using the newly proposed hysteretic model simulating soil's loading - unloading behavoir under Ko-condition. The lateral pressurds calculated by the new equation are found to agree well with those of field tests previously performed by other researchers.

  • PDF

Vibration Transfer Characteristics of the Reinforced Soil SRWs Under the Simulated Cyclic Train Loading (모사열차 반복하중 재하시 블록식 보강토 옹벽의 진동전달특성)

  • 고태훈;이진욱;이성혁;황선근;김정무
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.626-632
    • /
    • 2002
  • Geogrid is widely used as the reinforcement materials in railway earth structures in order to achieve efficient land utilization as well as securing safety in railway service lines in other countries. In this study, the real scale test was carried out to investigate the application of geogrid reinforced soil segmental retaining walls(SRWs) in railway. For this goal, the vibration transfer characteristics of reinforced soil segmental retaining walls was evaluated. The resonant frequencies of SRWs, vertical ground vibration in backfill and vertical/horizontal vibration at segmental units were acquired. This experimental data and analysis result can contribute to understand the vibration response behavior of SRWs.

  • PDF

Displacement Measuring Lab. Test of Reinforced-Soil Retaining Wall Block using 3D Digital Photogrammetry Image (수치사진영상을 이용한 보강토옹벽블록의 변위계측 실내시험)

  • Han, Jung-Geun;Jeong, Young-Woong;Hong, Ki-Kwon;Cho, Sam-Deok;Kim, Young-Seok;Bae, Sang-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • The collapsed cases are more and more increasing at the large scaled structures because of increasing of the risk due to natural disasters. The measuring instrument such as inclinometer, total station on reinforced-soil retaining wall has been used that displacement, settlement for stability assessment, maintenance and management of it. But because these has gotten many instability measuring factors for stability analysis of RRW, new system needs to complement disadvantage of existing system. In this study, we considered a application of Visual Monitoring System (VMS) to measure a displacement in face of wall through Lab. test about block assembly of segmental retaining wall during load test.

  • PDF

Numerical Analysis of Retaining Wall Considering Supporting Load of Adjacent Retaining Wall (인접 흙막이 구조물의 지보재 하중을 고려한 가시설의 수치해석)

  • Yoo, Chanho;You, Jaemin;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • Recently, as the building construction works have been activated, the environment in which the excavation work is proceeding in parallel with the existing structure and the adjacent excavation work is increasing. However, there is not a lot of research on this. In this study, numerical analysis was carried out for interaction analysis between former excavation construction and follow-up excavation on two excavation retaining structures in parallel with excavation. As a result of numerical analysis, if the supporting load of strut is not considered, it was analyzed that the displacement distribution in the structure can be underestimated and acting stress of strut is overestimated. It was analyzed that the support stress causes by the former excavation should be considered in order to simulate the actual behavior characteristic.

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.

An Experimental Study on the Stability of Inclined Earth Retaining (지주식 흙막이의 안정성에 관한 실험적 연구)

  • Seo, Min-Su;Im, Jong-Chul;Jeong, Dong-Uk;Yoo, Jae-Won;Koo, Young-Mo;Kim, Gwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.99-110
    • /
    • 2012
  • Inclined Earth Retaining Structure Method (IER method, briefly) is developed in order to improve the existing earth retaining method. In IER method, there are three main structures, front support, back support, and head binding. Especially, back support acts the role that reduces the earth pressure acting on the front support. In this study, the stability according to the installation angle and stiffness of front or back support is analysed by model tests. By the test results, it is known that inclined back support is very effective to reduce the earth pressure acting on the front support. Especially, the effect of the stiffness and installation angle of back support is analysed.

Analysis of Accident and Measurement Costs Resulting from Incidents in Retaining Walls (가시설 벽체 사고에 따른 복구비용 및 계측비용 분석)

  • Dong-Gun Lee;Ji-Yeol Choi;Jeong-Yeon Yu;Ki-Il Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2023
  • Ensuring the stability of visible structures during excavation works are extremely crucial. While the stability of the ground is analyzed through numerical calculations the during design phase, the conditions during construction often differ. Therefore, it is imperative to analyze the stability of the wall through measurements. The cost of measurements on the construction site is set at a very low unit price, which increases the risk of accidents involving retaining walls. In this study, we argue for the importance of automated or wireless system measurements of retaining walls, by estimating construction duration and accident costs through the analysis of hypothetical accident cases, and comparing these with measurement costs. In case of a major destruction during excavation work, the accident handling cost could be less than 5% of the total measurement budget. Therefore, increasing the measurement budget to prevent accidents in advance can be economically beneficial.

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.