• 제목/요약/키워드: Resultant Joint Moment

검색결과 10건 처리시간 0.027초

드롭 착지 시 스포츠 테이핑이 하지의 충격력과 근육 조율에 미치는 영향 (Effect of Sports Taping on Impact Forces and Muscle Tuning during Drop Landing)

  • 강년주;채원식
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.175-182
    • /
    • 2010
  • The purpose of this study was to evaluate the biomechanical effect of sports taping on the lower limb during drop landing. Twelve male university students who have no musculoskeletal disorder were recruited as the subjects. Principal strain, median frequency, vertical GRF, loading rate, angular velocity and resultant joint moment were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between taped and untaped conditions(p<.05). The results showed that principal strain of the thigh and the shank in taping group were significantly less than those found in control group. These indicated that sports taping may prevent excessive mechanical strain caused by impact force during the deceleration phase. Flexion(-)-extension(+) and varus(-)-valgus(+) resultant joint moment of the knee joint in taping group were greater than corresponding value for control group. It seems that extensor muscle of the knee joint were not only supported by sports taping during knee flexion but also sports taping is effective for minimizing the possibility of injury.

여성노인의 태권에어로빅스 12주 훈련 후 몸통지르기 동작시 하지관절의 생체역학적 변화 (Biomechanical Alterations in the Lower limb Joints during the Punching Motion of Elderly Women after 12-Weeks of Taekwonaerobics Training)

  • 유실
    • 한국운동역학회지
    • /
    • 제19권4호
    • /
    • pp.637-645
    • /
    • 2009
  • 이 연구는 여성노인의 태권에어로빅스 12주 훈련 후 앞굽이 몸통지르기 동작시 하지관절의 생체역학적 변화를 구명하는 것이다. 대상자는 여성노인 10명이 참여하였으며 카메라(MCU-240) 7대와 지면반력기(Kist1er-9286AA) 2대를 이용하여 데이터를 수집하였다. 유의수준 .10에서 운동전 후 차이는 다음과 같다. 첫째, 최소 관절각의 변화는 발목의 저측/배측굴곡(왼쪽, $p=0.001^*$), 외번/내번(양쪽, $p=0.009^*$, $p=0.04^*$)과 무릎의 외전/내전(왼쪽, $p=0.04^*$) 및 엉덩이의 내측/외측 회전(양쪽, $p=0.07^*$, $p=0.02^*$)에서 통계적으로 유의하게 나타났다. 둘째, 최대 관절모멘트 변화는 발목관절의 외번/내번 모멘트(양쪽, $p=0.05^*$, $p=0.05^*$), 무릎관절의 외전/내전 모멘트(왼쪽, $p=0.08^*$) 및 엉덩이관절의 내측/외측 회전 모멘트(오른쪽, $p=0.09^*$)가 통계적으로 유의하게 나타났다. 셋째, 최대 관절파워의 변화는 엉덩이관절의 굴곡/신전(양쪽, $p=0.05^*$, $p=0.01^*$)과 내전/외전(양쪽, $p=0.02^*$, $p=0.00^*$) 및 무릎의 내전/외전(왼쪽, $p=0.00^*$) 파워가 통계적으로 유의한 차이를 보였다. 결론적으로 태권에어로빅스 몸통지르기동작이 여성노인들의 하지 관절에 부분적인 생체변화를 일으켰다.

성인 계단보행 시 계단 너비에 따른 하지의 운동역학적 분석 (A Kinetic Analysis of the Lower Extremity during Walking on Three Different Stair width in Healthy Adults)

  • 전현민;류지선
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.161-169
    • /
    • 2008
  • 이 연구는 성인 남성을 대상으로 계단 너비에 따른 계단 보행의 지지국면 시 하지분절의 역학적 변인을 정량적으로 분석하여, 보다 효과적인 계단의 너비를 제시하고자 실시하였으며, 이를 위해 20대의 남자 대학생 10명이 참여하였다. 계단의 높이는 18cm, 최소폭은 90cm로 동일하나 디딤면의 너비가 각각 26cm, 31cm, 36cm인 세 개의 계단을 사용 하였다. 이때 사용된 계단의 세 번째 디딤면에 지면반력기를 설치하여 지지구간의 하지관절 모멘트를 분석한바 다음과 같은 결론을 얻었다. 상향계단보행에서 발목관절의 굴곡/신전 모멘트변화를 분석한 결과 계단의 너비가 증가 할수록 pull-up 단계의 peak 모멘트가 감소하였으며(p<.05), 무릎관절에서는 굴곡/신전 모멘트를 분석한 결과 계단의 너비가 증가할수록 무릎에 작용하는 신전모멘트가 중지지기에 증가하는 것으로 나타났다(p<.05). 그러나 고관절에서 차이가 없는 것으로 나타났다. 그리고 하향계단보행에서 발목관절의 굴곡/신전 모멘트를 분석한 결과 계단의 너비가 증가할수록 지지기 동안 저측굴곡과 배측굴곡의 차이가 확연히 나타나는 것으로 나타났으며(p<.05), 무릎관절과 고관절에서는 굴곡/신전 모멘트를 분석한 결과 계단의 너비에 따라 신전 모멘트의 차이가 크지 않은 것으로 나타났다.

내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석 (Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking)

  • 채원식;이행섭;정재후;김동수
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.

학제간 융합연구를 위한 테니스 백핸드 스트로크 동작의 운동역학적 비교 분석 (Kinetic comparative analysis of tennis backhand stroke for interdisciplinary convergence research)

  • 차정훈
    • 디지털융복합연구
    • /
    • 제13권7호
    • /
    • pp.373-380
    • /
    • 2015
  • 본 연구는 테니스 한손과 양손 백핸드 스트로크 동작에서 하지관절 움직임의 차이를 확인하여 유형별 특성을 밝히는데 그 목적이 있으며 그 결과는 다음과 같다. 볼의 속도를 결정하는 중요한 요인인 라켓헤드의 합성 속도는 양손 백핸드 스트로크 동작이 한손보다 빠른 속도를 나타냈다. 양손 백핸드 스트로크는 하체의 움직임을 최소화시키고 몸통 회전을 통한 스트로크를 하는 반면 한손 백핸드 스트로크는 몸통을 이용한 스트로크를 하기 보다는 공을 쫓아가듯이 스트로크 하는 것으로 나타났다. 슬관절의 신전모멘트는 한손 백핸드 스트로크가 큰 것으로 나타났지만, 내번모멘트와 회내모멘트 그리고 굴곡모멘트는 양손 스트로크에서 크게 나타났다. 고관절의 경우 신전, 내번, 회내 모멘트가 양손 백핸드 스트로크가 한손 보다 모두 큰 것으로 나타났는데 특히 내번모멘트의 경우 큰 차이를 나타난 반면, 외번모멘트는 한손 백핸드 스트로크가 큰 것으로 나타났다.

Effects of Joint Mobilization on Foot Pressure, Ankle Moment, and Vertical Ground Reaction Force in Subjects with Ankle Instability

  • Yoon, Na Mi;Seo, Yeon Soon;Kang, Yang-Hoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.153-159
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effects of joint mobilization on foot pressure, ankle moment, and vertical ground reaction force in subjects with ankle instability. Method: Twenty male subjects (age, $25.38{\pm}3.62yr$; height, $170.92{\pm}5.41cm$; weight, $60.74{\pm}9.63kg$; body mass index (BMI), $19.20{\pm}1.67kg/m^2$) participated and underwent ankle joint mobilization. Weight-bearing distribution, ankle dorsi/plantar flexion moment, and vertical ground reaction force were measured using a GPS 400 and a VICON Motion System (Oxford, UK), and subsequently analyzed. SPSS 20.0 for Windows was used for data processing and paired t-tests were used to compare pre- and post-mobilization measurements. The significance level was set at ${\alpha}$ = .05. Results: The results indicated changes in weight-bearing, ankle dorsi/plantar flexion moment, and vertical ground reaction force. The findings showed changes in weight-bearing distribution on the left (pre $29.51{\pm}6.31kg$, post $29.57{\pm}5.02kg$) and right foot (pre $32.40{\pm}6.30kg$, post $31.18{\pm}5.47kg$). There were significant differences in dorsi/plantar flexion moment (p < .01), and there were significant increases in vertical ground reaction forces at initial stance (Fz1) and terminal stance (Fz2, p < .05). Additionally, there was a significant reduction in vertical ground reaction force at midstance (Fz2, p < .001). Conclusion: Joint mobilization appears to alter weight-bearing distribution in subjects with ankle instability, with resultant improvements in stability.

드롭 착지동작 시 마우스가드 착용이 운동역학적 변인에 미치는 영향 (Biomechanical Effects of Wearing Mouthguards during Drop Landing)

  • 채원식;이규복;정재광;이행섭;김동수;정재후
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.347-355
    • /
    • 2013
  • The purpose of this study was to determine the biomechanical effect of wearing the mouthguard on the lower limb during drop landing. Nine male university students who have no musculoskeletal disorder were recruited as the subjects. Linear velocity, angular velocity, vertical GRF, loading rate, joint moment, and lower extremity muscle activity were determined for each subject. For each dependent variable, paired t-test was performed to test if significant difference existed between with mouthguard (WM) and without mouthguard (WOM) conditions (p<.05). The results showed that linear velocity, angular velocity, vertical GRF and loading rate were no significant difference between the two groups. The inversion moment of the ankle joint was increased in WM compared to WOM. Average IEMG values from BF, TA, and LG in WM were significantly greater than corresponding values in WOM during IP phase. This indicates that wearing mouthguard played a vital role in muscle tuning for maintaining joint stability of the lower limb and preventing injury.

달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화 (Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running)

  • Young-Seong Lee;Sang-Kyoon Park
    • 한국운동역학회지
    • /
    • 제33권4호
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

Development of a Numerical Methodology for Analysis and Design of Weldments

  • Sur, Ukhwan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.422-432
    • /
    • 2001
  • There are many analysis formulas for determining the resultant shear force in welds. However, there is no general procedure which is applicable to a joint with all six possible loadings exerted simultaneously. A numerical methodology and computer program for such a problem were developed, and they are capable of analyzing a weld of any shape composed of straight or circular line segments. The computer program developed in this study can also display the design procedures and results using computer graphics. The development of such a design procedure and an interactive computer program for weldments analysis will lead to lower cost.

  • PDF

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • 한국운동역학회지
    • /
    • 제20권1호
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.