• 제목/요약/키워드: Restoring Force

검색결과 187건 처리시간 0.029초

Brace-type shear fuses for seismic control of long-span three-tower self-anchored suspension bridge

  • Shao, Feifei;Jia, Liangjiu;Ge, Hanbin
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.147-161
    • /
    • 2022
  • The Brace-Type Shear Fuse (BSF) device is a newly proposed steel damper with excellent cumulative ductility and stable energy dissipation. In consideration of the current situation where there are not many alternatives for transversal seismic devices used in long-span three-tower self-anchored bridges (TSSBs), this paper implements improved BSFs into the world's longest TSSB, named Jinan Fenghuang Yellow River Bridge. The new details of the BSF are developed for the TSSB, and the force-displacement hysteretic curves of the BSFs are obtained using finite element (FE) simulations. A three-dimensional refined finite element model for the research TSSB was established in SAP2000, and the effects of BSFs on dynamic characteristics and seismic response of the TSSB under different site conditions were investigated by the numerical simulation method. The results show that remarkable controlling effects of BSFs on seismic response of TSSBs under different site conditions were obtained. Compared with the case without BSFs, the TSSB installed with BSFs has mitigation ratios of the tower top displacement, lateral girder displacement, tower bending moment and tower shear force exceeding 95%, 78%, 330% and 346%, respectively. Meanwhile, BSFs have a sufficient restoring force mechanism with a minor post-earthquake residual displacement. The proposed BSFs exhibit good application prospects in long-span TSSBs.

The Kinematic Factors of Physical Motions During Air Pistol Shooting

  • Kim, Min-Soo
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.197-204
    • /
    • 2016
  • Objective: The purpose of this study was to analyze the kinematic factors of motion during air pistol shooting. Method: This study aimed to investigate changes in forces during movement and determine the factors that affect changes in force during the first, middle, and last periods of shooting an air pistol. Two ground reaction force systems (force platform), SCATT (a shooting training system), and EMG (electromyogram) to measure the action potentials in the muscles of the upper body were used in this study. Four university air pistol players (age: 19.75 years, height: 175.50 cm, body mass: $69.55{\pm}11.50kg$, career length: $6.25{\pm}6years$) who are training to progress to a higher rank were enrolled. Results: In terms of the actual shooting results, the mean score in the middle section was $42.48{\pm}1.74$ points, higher than those in the first and the last periods when using SCATT. The gunpoint moved 13.48 mm more vertically than horizontally in the target trajectory. With respect to action potentials of muscles measured using EMG, the highest action potentials during the aiming-shooting segments, in order higher to lower, were seen in the trapezius (intermediate region), trapezius (superior region), deltoid (lateral), and triceps brachii (long head). The action potentials of biceps brachii and brachioradialis turned out to be high during grasping motion, which is a preparatory stage. During the final segment, muscle fatigue appeared in the deltoid (lateral), biceps brachii (long head), brachioradialis, and trapezius (intermediate region). In terms of the ground reaction force, during the first period of shooting, there was a major change in the overall direction (left-right $F_x$, forward-backward $F_y$, vertical $F_z$) of the center of the mass. Conclusion: The development and application of a training program focusing on muscle groups with higher muscle fatigue is required for players to progress to a higher rank. Furthermore, players can improve their records in the first period if they take part in a game after warming up sufficiently before shooting in order to heighten muscle action potentials, and are expected to maintain a consistent shooting motion continuously by restoring psychological stability.

몰수체의 원추형시험에 관한 연구 (Study on Coning Motion Test for Submerged Body)

  • 박종용;김낙완;이기표;윤현규;김찬기;정철민;안경수;이성균
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.436-444
    • /
    • 2015
  • A submerged body is sensitive to changes in the roll moment because of the small restoring moment and moment of inertia. Thus, a method for predicting the roll-related hydrodynamic coefficients is important. This paper describes a deduction method for the hydrodynamic coefficients based on the results of a coning motion test. A resistance test, static drift test, and coning motion test were performed to obtain the coefficients in the towing tank of Seoul National University. The sum of the hydrodynamic force, inertial force, gravity, and buoyancy was measured in the coning motion test. The hydrodynamic force was deduced by subtracting the inertial force, gravity, and buoyancy from the measured force. The hydrodynamic coefficients were deduced using the regression method.

Seismic response evaluation of concentrically rocking zipper braced frames

  • Sarand, Nasim Irani;Jalali, Abdolrahim
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.303-317
    • /
    • 2020
  • In this study an innovative rocking zipper braced frame (RZBF) is proposed to overcome the deficiencies of common concentrically braced frames. RZBF is an improved rocking concentrically braced frame which is based on combination of rocking behavior and zipper columns. The base rocking joints and post-tensioned bars provide rocking response and restoring force, respectively. Also, zipper columns distribute the unbalance force over the frame height and reduce the damage concentration. To evaluate seismic performance of RZBF, a comparison study is carried out considering concentrically braced frame, zipper braced frame, rocking concentrically braced frame and RZBF. Thereby, a suite of non-linear time history analyses had been performed on four different types of archetypes with four, six, eight, ten and twelve stories. Frames were designed and non-linear time history analyses were conducted in OpenSees. To compare the seismic behavior of the archetypes, roof drifts, residual roof drifts, story drifts, the forces of first and top story braces, PT bars forces, column uplift and base shears were taken in to consideration. Results illustrate that using RZBF, can reduce the damage due to reduced residual drifts. Zipper columns enhance the seismic performance of rocking systems. As the number of stories increase in the RZBF systems, larger top story braces were needed. So the RZBF system is applicable on low and midrise buildings.

Bias 스프링을 이용한 형상기억합금 액츄에이터의 설계 방법 (Design Method for Shape Memory Alloy Actuator with Bias Spring)

  • 이승기;나승우
    • 센서학회지
    • /
    • 제7권6호
    • /
    • pp.437-445
    • /
    • 1998
  • Bias 스프링을 이용한 형상기억합금 액츄에이터는 양방향 동작기구로서 이용이 가능하다. 이러한 bias식 형상기억합금 액츄에이터를 설계하기 위해서는 발생력이나 작동변위 등의 설계 사양이 만족되도록 형상기억합금스프링 및 bias 스프링의 구조를 결정하여야 한다. 본 논문에서는 bias식 형상기억합금 액츄에이터의 설계방법으로서, 경험적 가정에 의존하는 기존의 방법과는 달리 주어진 설계 사양만으로부터 직접 설계가 가능한 새로운 방법을 제시하고 이를 실험결과와 비교하였다. 실험값도 설계값과 비교적 잘 일치하여 제시된 설계방법의 타당성 및 유용성을 검증하였다.

  • PDF

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.

전자기력 보상방식의 힘 측정을 위한 평행도 오차 보상 (Parallelism Error Compensation for Force Measurement by Electromagnetic Compensation)

  • 최인묵;우삼용;김부식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1051-1054
    • /
    • 2003
  • For micro-weighing, null balance method is widely used in the precision industrial fields, such as biomedicine, semiconductor, chemistry and so on. In order to obtain high resolution and large measurement range simultaneously, the mechanism should be analyzed and optimized. However, large measurement error can be generated according to the mass loading position and this error is called as a corner loading error. The corner loading error is caused by the parallelism error of a Roberval mechanism used to minimize it. The corner loading error is one of the most dominant error sources that should be removed. It is possible to design that the mechanism has no corner loading error theoretically, but the mechanism of the micro weighing device is very difficult to be realized as original design due to assembling and manufacturing error. For the required specification of the device, the precise manufacturing technique under a few $\mu\textrm{m}$ is required for the realization of the design. In this paper, the effects of the parallelism error are analyzed by using Lagrange method and verified by experiment. Also, the compensation mechanism is proposed and the corner loading error is reduced by restoring tile parallelism.

  • PDF

로봇 설치면 자세 변화에 대응 가능한 자중 보상 기반 안전 매니퓰레이터 (Safe Industrial Manipulator Based on a Counterbalancing Mechanism with Adaptation to the Posture Change of a Robot Base Plane)

  • 도현민;김휘수;김두형;최태용;박동일;손영수
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.511-516
    • /
    • 2016
  • Guaranteeing the safety of human workers around robots has become an important issue with the increasing demand for human-robot collaboration in industrial production lines. This study proposes a robot manipulator equipped with a counterbalancing mechanism that reduces the power of actuators required to drive the robot, thus keeping a human worker safer in a human-robot collaborative environment. A counterbalancing torque that exactly cancels out the gravitational torque in the proposed mechanism is generated by restoring the force of a spring in the counterbalancing mechanism. A prototype design and experimental results are presented to verify the effectiveness of the proposed method.

저가 수중 무인 이동체 개발 및 운동성능 검증 (Development of a Low-cost Unmanned Underwater Vehicle and Performance Verification)

  • 황동욱;장민규;김진현
    • 로봇학회논문지
    • /
    • 제13권2호
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, a high performance underwater vehicle which can be manufactured at low cost is designed and fabricated, and its performance is verified through experiments. To improve efficiency, the Myring equation is used to design the appearance and the duct structure including the thruster is planned to increase the propulsion efficiency while reducing the drag force. Through various methods, it is secured stable waterproof performance, and also is devised to have high speed movement and turning performance. The developed underwater vehicle is equipped with a high output BLDC motor to achieve a linear speed of up to 2 m/s and can change direction rapidly with stability through four rudders. The rudders are driven by coupling a timing belt and a pulley by extending the axis of a servo motor, and are equipped at the end of the body to turn heading. In addition, for stable posture control, the roll keeps its internal center of gravity low and maintains its stability due to restoring force. By controlling the four rudders, pitch and yaw are handled by the PID controller and show stable performance. To investigate the horizontal turning performance, it is confirmed that the yaw rate controller is designed and stable yaw rate control is performed.

Cyclic compressive behavior of polyurethane rubber springs for smart dampers

  • Choi, Eunsoo;Jeon, Jong-Su;Seo, Junwon
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.739-757
    • /
    • 2017
  • The main goal of this study is to investigate the hysteretic behavior of polyurethane rubber springs in compression with and without precompression. The precompression is introduced to provide rigid force in the behavior, and thereby a precompressed rubber spring can be used for a restoring element. For the goal, this study prepares nine rubber springs for three suites which are all cylindrical in shape with a hole at the center. The rubber springs in each suite have different dimensions of diameter and length but have similar shape factors; thus, they are designed to have a similar compressive stiffness. Three rubber springs from the nine are tested with increasing compressive strain up to 30% strain to investigate the behavior of the rubber springs without precompression as well as the effect of the loading strain. The nine springs are compressed up to 30% strain with increasing precompressive strain from 0 to 20% at increments of 5%. The study analyzes the effective stiffness and damping ratio of the rubber springs with and without precompression, and the rigid force of the precompressed rubber springs is discussed. Finally, this study suggests a regression method to determine the minimum required precompression to eliminate residual strain after unloading.