• 제목/요약/키워드: Response of Vibration

검색결과 3,370건 처리시간 0.03초

지하철 진동에 의한 구조물의 거동특성 (CHARACTERISTICS OF STRUCTURAL RESPONSE INDUCED BY SUBWAY OPERATION)

  • 김희철;이동근;정건영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.120-127
    • /
    • 1994
  • Noise and vibration induced by subway operation are one of the major factor which annoy residents living near railway tracks. While lateral vibration is a major factor in analyzing seismic effect of the structure, vertical vibration became a major concern in considering the subway induced vibration because relatively smaller energy affects only nearby areas than that of earthquake. A characteristics of structural response induced by subway operation has been studied with different total height of the building and different number of spans. Also the frame with different span length has been studied. As the numbers of degrees freedom increase the higher mode effect on vertical vibration increases. Accordingly, the total affecting vertical modes are distributive as the numbers of degrees of freedom increase. Though the total degree of freedom increases, only some of the dominant modes actively affects to the vertical response of the structure. A frame with the number of equal spans could be analyzed by replacing the whole frame as one when we want to predict the response of the vertical vibration. Also it has been found that the seperate frame analysis will give little different result when adjacent span is relatively longer than others.

  • PDF

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법 (Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern)

  • 김찬중
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

각종 매설관의 강제진동거동에 관한 연구 (A Study on the Forced Vibration Responses of Various Buried Pipelines)

  • 정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1334-1339
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a forced vibration analysis. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

광디스크 드라이브의 광대역 진동저감을 위한 동흡진기 설계 및 동특성 해석 (Dynamic Analysis of an Optical Disk Drive for Wide Range Vibration Reduction by Using Dynamic Vibration Absorber)

  • 이동철;정진태;홍순교;김홍렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.979-984
    • /
    • 2003
  • A Dynamic vibration absorber(DVA) is developed to reduce the excessive vibration of an optical disk drive(ODD) originated from the deriving range of an wobble disk and unbalanced disk. We design the material properties and shapes of the DVA by simulating Frequency response function(FRF) such as target frequency, mass of the DVA, stiffness of damper, damping coefficient, shape and dimension, analyze dynamic characteristics and provide its design guide line for suppressing the vibration of an optical disk derive. To examine the performance of the DVA, the vibration of the feeding system with DVA and without DAA are measured by using a three-axis accelerometer, PCB derive and Pulse analyzer. The result show that the proposed DVA reduces the vibration of wide range in ODD.

  • PDF

틸트로터 허브 동하중을 고려한 복합재 스마트 무인기 진동해석 (Structural Vibration Analysis for a Composite Smart UAV Considering Dynamic Hub-loads of the Tilt-rotor)

  • 김동현;정세운;구교남;김성준;김성찬;이주영;최익현;이정진
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.63-71
    • /
    • 2005
  • In this study, structural vibration analyses of a composite smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt-rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present smart UAV(TR-S2) structural model is constructed as full 3D configurations with both the helicopter flight mode and the airplane flight mode. Modal based transient response and frequency response analyses are used to efficiently investigate vibration characteristics of structure and installed electronic equipments. It is typically shown that the helicopter flight mode with the 90-deg tilting angle is the most critical case for the induced vibration of installed electronic equipments in the front.

외력을 받는 주기적 구조물의 진동 국부화 (Vibration Localization of a Periodic Structure Undertaking External Force)

  • 김재영;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.543-548
    • /
    • 2000
  • Vibration localization of a periodic structure with mistuning is presented in this paper. Mistuning in periodic structures can lead to an increase of the forced response which is much larger than those of perfectly tuned assembly. Thus, mistuning has a critical impact on high cycle fatigue in structures, and it is of great importance to predict the mistuned forced response in efficient manner. In this paper, forced response of a coupled pendulum is investigated to identify localization effects of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is seen that in certain condition of mistuning and coupling, strong localization occurs and this can be significant under weak damping.

  • PDF

군용 차량 주행 내충격 분석 (Analysis for Driving Shock Resistance of Military Vehicle)

  • 전종익;이종학;정의봉;강광희;최지호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.267-272
    • /
    • 2014
  • In this paper, we analyze the characteristics for the driving shock resistance of the military vehicle through the bump test. Prior to the experiment, theoretical analysis was performed by using the SRS(shock response spectrum) and VRS(vibration response spectrum) analysis method. And we estimated the characteristics for the driving shock resistance of the military vehicle. Bump test was performed using the acceleration sensor and the driving test at a different speed. We evaluated the characteristics for the driving shock resistance of the military vehicle based on the result. And predicted values were compared with the theoretical analysis. In addition, we evaluated the results of the theoretical prediction of the SRS and the VRS analysis. And we evaluate the suitability of the prediction method at military vehicle shock analysis.

  • PDF

Advanced approach to design of small wind turbine support structures

  • Ismar, Imamovic;Suljo, LJukovac;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.525-542
    • /
    • 2022
  • In this work we present an advanced approach to the design of small wind turbine support steel structures. To this end we use an improved version of previously developed geometrically exact beam models. Namely, three different geometrically exact beam models are used, the first two are the Reissner and the Kirchhoff beam models implementing bi-linear hardening response and the third is the Reissner beam capable of also representing connections response. All models were validated in our previous research for a static response, and in this work they are extended to dynamic response. With these advanced models, we can perform analysis of four practical solutions for the installation of small wind turbines in new or existing buildings including effects of elastoplastic response to vibration problems. The numerical simulations confirm the robustness of numerical models in analyzing vibration problems and the crucial effects of elastoplastic response in avoiding resonance phenomena.