• Title/Summary/Keyword: Response Velocity

Search Result 1,247, Processing Time 0.028 seconds

Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation (무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향)

  • Dong-Su Kim;Da-Eun Lee;Hyun-A Shin;Ji-Won Jeon;Young-Keun Woo
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.

A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve (신뢰성 있는 분산곡선의 결정을 위한 수동표면파 측정 및 분석기법의 제안)

  • Yoon, Sung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.47-60
    • /
    • 2007
  • Conventional active surface wave measurements performed using a transient or continuous source are often limited in the maximum depth of penetration due to the difficulty of generating low-frequency energy with reasonably portable sources. This limitation may inhibit accurate seismic site response calculations because of the inability to define deeper subsurface structure. By measuring surface wave generated by passive sources including microtremors and cultural noise, it is possible to overcome this problem and develop soil stiffness profiles to much larger depth. Reliability of dispersion estimates from the passive surface wave measurements is critical to present reliable shear wave velocity profiles and can be improved by the measurements and analyses of passive surface waves based on correct understanding of systematic errors included in passive dispersion data. In this study, the systematic errors caused by poor wavenumber resolution and energy leakage into sidelobes in passive tests are mainly explored. Recommendations for reliable passive surface wave measurements and dispersion estimates are presented and illustrated at a site in San Jose, California, U.S.

Evaluation of Local Effect Prediction Formulas for RC Slabs Subjected to Impact Loading (충격하중이 작용하는 RC 슬래브의 국부손상 산정식에 대한 고찰)

  • Chung, Chul-Hun;Choi, Hyun;Lee, Jung Whee;Choi, Kang Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.543-560
    • /
    • 2010
  • Safety-related concrete structures in a nuclear power plant must be protected against the impact of flying objects, referred to in the profession as missiles. In practice, the structural verification is usually carried out by means of empirical formulas, which relate the velocity of the impinging missile to the wall thickness needed to prevent scabbing or perforation. The purpose of this study is to reevaluate the predictability of the local effect prediction formulas for the penetration and scabbing depths and perforation thickness. Therefore, available formulas for predicting the penetration depth, scabbing thickness, and perforation thickness of concrete structures impacted by solid missiles are summarized, reviewed, and compared. A series of impact analyses is performed to predict the local effects of the projectile at impact velocities varing from 95 to 215 m/s. The results obtained from the numerical simulations have been compared with tests that were carried out at Kojima to validate numerical modelling. The simulation results show reasonable agreement with the Kojima test results for the overall impact response of the RC slabs. From these results, it seems that the Degen equation give a very good estimate of perforation thickness against a tornado projectile for test data. Finally, the results obtained from the impact analysis have been compared with Degen formula to determine the perforation thickness of the RC slab.

Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section (자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석)

  • Ryu, Jiwon;Ji, Un;Kim, Sanghyeok;Jang, Eun-kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.735-747
    • /
    • 2023
  • In recent times, the sharp increase in extreme flood damages due to climate change has posed a challenge to effectively address flood-related issues solely relying on conventional flood management infrastructure. In response to this problem, this study aims to consider the effectiveness of nature-based flood management approaches, specifically levee retreat and relocation. To achieve this, we utilized a 1D numerical model, HEC-RAS, to analyze the flood reduction effects concerning floodwater levels, flow velocities, and time-dependent responses to a 100-year frequency flood event. The analysis results revealed that the effect of creating a flood buffer zone of the nature-based solution extends from upstream to downstream, reducing flood water levels by up to 30 cm. The selection of the flow roughness coefficient in consideration of the nature-based flood buffer space creation characteristics should be based on precise criteria and scientific evidence because it is sensitive to the flood control effect analysis results. Notably, floodwater levels increased in some expanded floodplain sections, and the reduction in flow velocities varied depending on the ratio of the expanded cross-sectional area. In conclusion, levee retreat and floodplain expansion are viable nature-based alternatives for effective flood management. However, a comprehensive design approach is essential considering flood control effects, flow velocity reduction, and the timing of peak water levels. This study offers insights into addressing the challenges of climate-induced extreme flooding and advancing flood management strategies.

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves (긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo-Woo;Kim, Nam-Woo;Park, In-Bo;Kim, Sea-Moon
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Growth responses to growth hormone therapy in children with attenuated growth who showed normal growth hormone response to stimulation tests (성장호르몬 자극검사가 정상인 성장 장애 소아 환자에게서 성장호르몬 투여에 따른 성장속도의 변화)

  • Kim, Jae-Hyun;Chung, Hye-Rim;Lee, Young-Ah;Lee, Sun-Hee;Kim, Ji-Hyun;Shin, Choong-Ho;Yang, Sei-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.8
    • /
    • pp.922-929
    • /
    • 2009
  • Purpose : The aim was to investigate the clinical characteristics and responses to growth hormone (GH) therapy in children with attenuated growth who showed normal GH responses to GH stimulation tests (GHST). Methods : The study included 39 patients with height velocity (HV) of less than 4 cm/yr and normal GHST results. Clinical characteristics of patients were analyzed retrospectively. Results : Eleven were born as small for gestational age (SGA) and 28 as appropriate for age (AGA). In the SGA group, the standard deviation score (SDS) of age and height measured at their first visit was significantly low. Sixteen patients were treated with GH and six of 23 without GH therapy were followed for 1 year after GHST. The mean (range) of HV was 7.7 (4.9 to 11.1) cm/yr in patients with GH therapy and 3.7 (2.7 to 4.5) cm/yr in those without GH therapy, which was statistically significant (P<0.001). In the GH-treated group, HV and difference in height SDS during the treatment increased significantly (P<0.001; P< 0.001, respectively). HV increased after 1 year of GH therapy in the SGA and AGA groups (SGA, P=0.043; AGA, P=0.003). The level of Insulin-like growth factor-I was significantly lower in GH-treated patients with height SDS <-3 than those with ${\geq}3$ (P=0.023). Conclusion : In children with growth failure and normal GHST, HV increases significantly by short-term GH therapy. The assessment of long-term effects of GH therapy is necessary. Moreover, further studies should be considered to evaluate the GH-IGF-I axis due to the possibility of GH insensitivity syndrome.

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.

Volatilization of molinate in paddy rice ecosystem and its concentration in air causing phytotoxicity to chili pepper (벼 재배 환경 중 molinate의 휘산과 공기 중 고추약해 발현농도)

  • Park, Byung-Jun;Choi, Ju-Hyeon;Kim, Chan-Sub;Im, Geon-Jae;Oh, Byung-Youl;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.70-80
    • /
    • 2005
  • To evaluate the exposure of molinate in agricultural environment and its effect against the non-target crop in air, this experiment was conducted to elucidate volatilization characteristics of molinate in aquatic condition and to determine critical concentration of molinate in the air causing phytotoxicity to Chili pepper. Cumulative volatilized rate of molinate from water was 22.7% at $35^{\circ}C$ for water temperature and 20 L/min for air velocity while 3.2% at $25^{\circ}C$ and 10 L/min within 47 hour after applied under closed system, respectively. The molinate concentrations in air above 60 cm height from soil surface of valley and open paddy rice field were reached the highest value of 18.17 and $11.59{\mu}g/m^3$, respectively within 24 hours after applying granular formulation at dose rate of molinate 150 g/1,000 $m^2$. However, their concentrations were drastically diminished to around 0.18 and $0.51{\mu}g/m^3$ level in 20 days after application, which volatilization pattern were similar to both regions. Also, the concentration of molinate in air above 60 cm height from soil surface was distributed higher 2 times than that above 180 cm height. Meanwhile, a phytotoxic symptom against the nearby chili pepper was revealed within three days after applied and molinate was detected $0.004{\sim}0.006$ mg/kg level from severe damaged leaves. The dose and exposure relations of molinate in the air against the non-target crop was also investigated in lab trial. The phytotoxic symptom, shriveled leaves, of the chili pepper was encountered by exposing two days with concentration of $13.6{\mu}g/m^3$, three days with $6.8{\mu}g/m^3$ or four days with $3.4{\mu}g/m^3$. The symptom was still recovered within four weeks after the plants had received fresh air. On the other hand, the phytotoxic response through root uptake of the herbicide in water culture was relatively insensitive, in which the symptom is observed ten days with the concentration of 300 ${\mu}g/L$.