• Title/Summary/Keyword: Response Surface Analysis

Search Result 1,773, Processing Time 0.029 seconds

Weight Minimization of a Double-Deck Train Carbody using Response Surface Method (반응표면 모델을 이용한 2층열차 차체의 경량화 설계)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.453-458
    • /
    • 2005
  • Weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. It is required to decide 36 thickness of aluminum extruded panels. However, the design variables are two many to tract. moreover, one execution of structural analysis of double-deck carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Response surface model is used to apporximate static response of double-deck carbody. To obtain plausible response surface model, orthogonal array is empolyed as design of experiment(DOE). Design improvement by approximate model-based optimization is described. Accuracy and efficiency of optimization by using response surface model are discussed.

  • PDF

Response Surface Methodology based on the D-optimal Design for Cell Gap Characteristic for Flexible Liquid Crystal Display (D-optimal Design을 이용한 Flexible 액정 디스플레이용 셀 갭 특성에 대한 반응 표면 분석)

  • Ko, Young-Don;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.510-513
    • /
    • 2004
  • This paper represents the response surface model for the cell gap on the flexible liquid crystal display (LCD) process. Using response surface methodology (RSM). D-optimal design is carried out to build the design space and the cell gap is characterized by the quadratic model. The statistical analysis is used to verify the response surface model. This modeling technique can predict the characteristics of the desired response, cell gap, varying with process conditions.

  • PDF

Optimal Structural Design and Fatigue Analysis of Radius Rod by Response Surface Method (반응표면법에 의한 레디어스로드 최적구조설계 및 피로해석)

  • Park, Sohyeon;Kim, Eunsung;Oh, Sangyeob;Yu, Hyosun;Yang, Sungmo;Kim, YongKwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • This paper aims to obtain the effect of lightweight on Radius rod. The response surface method used in the paper is the statistical method. Optimization method is performed with the Radius rod using the lightweight material. Structural analysis is executed by using the ANSYS program to find static and dynamic responses. From this study result, it is verified that the response surface method has the advantage of optimum value in comparison with other optimization methods. The analysis is also performed by response surface method to derive optimal design values. Steel model and aluminium initial model are obtained by finite element analysis to clarify design criteria and the results are compared with three models each other. The weights can be reduced by optimal design analysis results of these models similar to those of existing products. The quantitative goals in this study can also attained through results of fatigue analyses. The reliability on optimal design of Radius rod can be improved by use of structural and fatigue analysis results.

Multi-response Optimization by a Response Surface Approach for a Taguchi-Type Multi-characteristic Experiments (다중반응표면분석방법을 이용한 다꾸찌 다특성 실험에 대한 분석 방법)

  • 이우선
    • Journal of Applied Reliability
    • /
    • v.4 no.1
    • /
    • pp.39-64
    • /
    • 2004
  • Taguchi's multi-characteristic experiments seek proper choice of levels of contollable factors which satisfy that all reponses of characteristics in a desirable range simultaneously. This aim can be achieved by response surface techniques that allow more flexible in modeling than traditional Taguchi's parameter design. In this article, a multi-response surface modeling and analysis techniques is proposed to deal with the multi-characteristic optimization problem in experimentation with Taguchi's controllable and noise factors.

  • PDF

Reliability Analysis of Pile Type Quaywall Using Response Surface Method (응답면 기법을 이용한 잔교식 안벽의 신뢰성 해석)

  • Lee, Sang-Geun;Kim, Dong-Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.407-413
    • /
    • 2011
  • Reliability analysis of pile type quaywalls were done by using response surface method. Pier structures have implicit form of limit state function since they are flexible in motion, which is different from gravity type quaywalls. To solve a reliability analysis problem with implicit limit state function, response surface method was applied. Reliability indices of structure under seismic load were found for pier structures Then, they were compared with those found by simulation method. In numerical analysis, both the inclined type and vertical type were analyzed.

Optimized Mixing Design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar by Response Surface Analysis (반응표면분석법에 의한 탄소포집 활성 고로슬래그 모르타르의 최적배합 도출에 관한 연구)

  • Jang, Bong Jin;Park, Cheol woo;Kim, Seung Won;Ju, Min Kwan;Park, Ki Tae;Lee, Sang Yoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.69-78
    • /
    • 2013
  • PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, $Ca(OH)_2$ and $Na_2SiO_3$ for carbon capture and sequestration as well as strength development. METHODS : This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of $60^{\circ}C$. CONCLUSIONS : Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.

Optimal Design of the Monolithic Flexure Mount for Optical Mirror Using Response Surface Method (반응표면법을 이용한 광학미러용 일체형 유연힌지 마운트 최적설계)

  • Kyoungho Lee;Byounguk Nam;Sungsik Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2023
  • An optimal design of a simple beam-shaped flexure hinge mount supporting an optical mirror is presented. An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. This side-supporting mount is flexible in the radial direction and rigid for the remaining degrees of freedom to support the mirror without transferring thermal load. Through thermo-elastic, optical and eigenvalue analysis, opto-mechanical performance was predicted to establish the objective functions for optimization. The key design parameters for this flexure are the thickness and length. To find the optimal values of design parameters, response surface analysis was performed using the design of experiment based on nested FCD. Optimal design candidates were derived from the response surface analysis, and the optimal design shape was confirmed through Opto-mechanical performance validation analysis.

Shape Optimization of a Micro-Static Mixer (마이크로 믹서의 형상 최적화)

  • 한석영;김성훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.166-171
    • /
    • 2004
  • In this study, shape optimization of micro-static mixer with a cantilever beam was accomplished for mixing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

  • PDF

Quality Measurement of Rice - Mixture Extrudate by the Response Surface Regression Analysis (반응표면분석에 의한 쌀 압출성형물의 품질평가)

  • 고광진;김준평
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.1 no.3
    • /
    • pp.305-311
    • /
    • 1991
  • The study was designed to investigate overall acceptability of rice extrudate with added ginseng flour extruded by single screw extruder. Graphic three dimension analysis on response surface regression was conducted for overall acceptability evaluated by balanced incomplete block design. Overall acceptability, which formed a saddle point, increased as moisture content increased at lower die temperature, and as moisture content decreased at higher die temperature. Critical values of each variable which indicated optimum response are 5.0% ginseng content, 17.8% moisture content and 104.6$^{\circ}C$ die temperature, and optimum inferred score of overall acceptability is 59.6 and 90. Key words: extrdate, overall acceptability, response surface regression analysis, balanced incomplete block method.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.