• Title/Summary/Keyword: Response Phases

Search Result 311, Processing Time 0.023 seconds

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Analysis of Object-Oriented Metrics to Predict Software Reliability (소프트웨어 신뢰성 예측을 위한 객체지향 척도 분석)

  • Lee, Yangkyu
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • Purpose: The purpose of this study is to identify the object-oriented metrics which have strong impact on the reliability and fault-proneness of software products. The reliability and fault-proneness of software product is closely related to the design properties of class diagrams such as coupling between objects and depth of inheritance tree. Methods: This study has empirically validated the object-oriented metrics to determine which metrics are the best to predict fault-proneness. We have tested the metrics using logistic regressions and artificial neural networks. The results are then compared and validated by ROC curves. Results: The artificial neural network models show better results in sensitivity, specificity and correctness than logistic regression models. Among object-oriented metrics, several metrics can estimate the fault-proneness better. The metrics are CBO (coupling between objects), DIT (depth of inheritance), LCOM (lack of cohesive methods), RFC (response for class). In addition to the object-oriented metrics, LOC (lines of code) metric has also proven to be a good factor for determining fault-proneness of software products. Conclusion: In order to develop fault-free and reliable software products on time and within budget, assuring quality of initial phases of software development processes is crucial. Since object-oriented metrics can be measured in the early phases, it is important to make sure the key metrics of software design as good as possible.

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.

Changes in the Business Cycle of the Korean Economy: Evidence and Explanations (한국 경기변동의 특징 및 안정성에 대한 연구)

  • Lee, Jaejoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.2
    • /
    • pp.47-85
    • /
    • 2009
  • With a relatively simple quantitative method, this study comprehensively analyzes the characteristics related to business cycles represented by macroeconomic variables of Korea since 1970. This empirical analysis deals with roughly following three topics: How to identify cyclical component with respect to trend; with what characteristics and how the economic variables of each sector move with in the phases of business cycle, and; whether there are signs of a structural change in the phases of business cycle. Section 2 discusses how to identify trends and cycle components, the basis assumption for the analysis of business cycle. Like the Korean economy, where a relatively high growth rate has been maintained, it is appropriate to determine its economic recession based on the fall in the growth trend, not in the absolute level of real output. And, it is necessary to apply the concept of growth cycle against a traditional concept of business cycle. Accordingly the setting of growth trend is of preliminary importance in identifying cyclical fluctuations. The analysis of Korea's GDP data since 1970, the decomposition of trends and cycles through the Band-pass filter is found to appropriately identify the actual phases of busyness cycle. Section 3 analyzes what particular relationship various economic variables have with output fluctuations during the phases of economic cycle, using the corss-correlation coefficients and prediction contribution. Section 4 monitors the stability of the phases of Korea's business cycle and quantitatively verifies whether there is a structural break, and then reviews the characteristics of variations in each sector. And, stylized facts observed through these studies are summarized in the conclusion. The macroeconomic stability of Korea, in particular, is found to continue to improve since 1970, except for the financial crisis period. Not only that, it is found that its volatility of economic growth rate as well as inflation have been reduced gradually. Meanwhile, until recently since 2000, the volatility in domestic demand has remained stable, while that in exports and imports has been increased slightly. But, in an over all perspective, Korea's business cycle variation is on the decline due to shorter response period to shocks and the formation of complementary relationship among economic sectors.

  • PDF

The Countermeasure to the Stages of Crisis Management in the Bioterrorism (생물테러리즘의 위기관리방안)

  • Lee, Kwang-Lyeol
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.608-613
    • /
    • 2009
  • This study aims to examine terrorism by biological agents. These days terrorism evolved so rapidly that more than one terror occurs a day in global society as we are on the edge of so-called New-terrorism. One of new examples of new terrorism is Bioterrorism by biological agents. In order to address Bioterrorism we should conduct a study to examine things to be prepared at ordinary times and future plans. As an effort to develop countermeasures against Bioterrorism, anti-terrorism laws should be made on Prevention phases anti-terrorism funding laws as well. Other Bioterrorism laws need to be made. On Response phases initial reaction task force should be ready for making positive initial reaction. A special hospital for CBR(Chemical, Biological, and Radiological) warfare needs to be designated to practice medicine. Biological-Safety-Levels should be constructed by IV levels. Effective public promotion network should be built. On Recovery phases evaluation system needs to be suggested and international cooperative network should be established.

  • PDF

Changes in Biochemical Composition of the Digestive Gland of the Female Purple Shell, Rapana venosa, in Relation to the Ovarian Developmental Phases

  • Chung, Ee-Yung;Kim, Sung-Yeon;Park, Kwan-Ha
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • The Ovarian developmental phases of the reproductive cycle of Rapana venosa can be classified into five successive stages by histological study: early active stage (September to February), late active stage (December to April), ripe stage (March to July), partially spawned stage (May to August), and recovery stage (June to September). To understand the characteristics of nutrient storage and utilization in the digestive gland cells with ovarian developmental phases, we examined the digestive gland - which is the major nutrient supply organ associated with ovarian development of the female purple shell - by biochemical methods. Total protein contents in the digestive gland tissues increased in March (late active stage) and reached the maximum in May (ripe and partially spawned stages), and then their levels sharply decreased in July (partially spawned and recovery stages). Total lipid contents in the digestive gland tissues reached the maximum in January (early active stage). Thereafter, their levels rapidly decreased from May (ripe and partially spawned stages) and reached a minimum in July (partially spawned and recovery stages). The total DNA contents did not significantly change regardless of the different developmental stages of the ovary. However, it was also found from biochemical analysis that changes in total RNA content follow the same seasonal cycling to protein. These results indicate that the digestive gland is an important energy storage and supply organ in purple shells, and that the nutrient contents of the digestive gland change in response to gonadal energy needs.

  • PDF

Effects of In on the Precipitation Phenomena of Al-2.1Li-2.9Cu Alloy by Differential Scanning Calorimetry (열분석법에 의한 Al-2.1Li-2.9Cu합금이 석출현상에 미치는 In 첨가의 영향)

  • Park, Tae-Won;Song, Young-Beum;Lee, Yong-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.237-245
    • /
    • 1997
  • A study was conducted to examine the effects of In addition on the precipitation behaviors of Al-2.1Li-2.9Cu alloy by differential scanning calorimetry, transmission electron microscopy and micro-hardness tester. DSC analysis was measured over the temperature range of $25{\sim}550^{\circ}C$ at a heating rate of $2{\sim}20^{\circ}C$/min. The heat evolution peaks due to the formation of GP zone and ${\delta}$'phase shift to higher temperature and the peaks to $T_1$ and ${\theta}$'phases shift to lower temperature by In addition. From this result, it was proved that the formation of GP zone and ${\delta}$'phase is suppresed whereas that of $T_1$ and ${\theta}$'phases are accelerated by the In addition of 0.15wt%. The age hardening curve aged at $190^{\circ}C$ showed that the In bearing alloy(alloy B) has more faster age hardening response and a higher peak hardness than In-free alloy(alloy A), attributed to the fine and homogeneous distribution of $T_1$ and ${\theta}$'phases. The activation energies for the formation of ${\delta}$'phase in In-free and In-bearing alloys are 22.3kcal/mol and 18.6kcal/mol, respectively. Those for $T_1(+{\theta}^{\prime})$ phase of In-free and In-bearing alloys are 24.3 and 37.5kcal/mol, respectively. Quenched-in excess vacancies play an important role to the formation of precipitates.

  • PDF

Controlling Factors of Open-Loop Combustion Response to Acoustic Pressures in Liquid Propellant Rocket Engine (강한 압력파동에 구속된 액체 추진제 연소응답의 지배인자)

  • Yoon Woongsup;Lee Gilyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.267-273
    • /
    • 2004
  • This paper targets to define controlling factors of pressure-coupled combustion response and estimate their effects on droplet evaporation process. Dynamic characteristics of hydrocarbon propellant vaporization perturbed by acoustic pressure are numerically simulated and analyzed. 1-D droplet model including phase equilibrium between two phases is applied and acoustic wave is expressed by harmonic function. Effects of various design factors and acoustic pressure on combustion response are investigated with parametric studies. Results show that driving frequency of acoustic perturbation and ambient pressure have important roles in determining magnitude and phase of combustion response. On the other hand, other parameters such as gas temperature, initial droplet size and temperature, and amplitude of acoustic wave cause only minor changes to magnitude of combustion response. Resultant changes in phase of heat of vaporization and thermal wave in droplet highly influence magnitude and phase of combustion response.

  • PDF

Response Analysis of Nearby Structures to Excavation-Induced Advancing Ground Movements (지반굴착 유발 진행성 지반변위에 의한 인접구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.153-162
    • /
    • 2009
  • This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions of different soil and structural characteristics. The response of four and two-story block structures, which are subjected to excavation-induced advancing ground movements, are investigated in different soil conditions using numerical analysis. The structures for numerical analysis are modelled to have cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four and two-story block structures are investigated with advancing ground movement phases and compared with the response of structures which are subjected to excavation-induced total ground movement. The response of structures is compared among others in terms of the magnitude and shape of deformations and cracks in structures for different structure and ground conditions. The results of the comparison provide a background for better understandings for controlling and minimizing building damage on nearby structures due to excavation-induced ground movements.