• Title/Summary/Keyword: Response Modification Factor (R-Factor)

Search Result 48, Processing Time 0.021 seconds

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.

Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)

  • Abdollahzadeh, Gholamreza;Banihashemi, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.621-636
    • /
    • 2013
  • Response modification factor is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake, in conformity with the point that many seismic design codes led to reduce the loads. In the present paper it's tried to evaluate the response modification factors of dual moment resistant frame with buckling restrained braced (BRB). Since, the response modification factor depends on ductility and overstrength; the nonlinear static analysis, nonlinear dynamic analysis and linear dynamic analysis have been done on building models including multi-floors and different brace configurations (chevron V, invert V, diagonal and X bracing). The response modification factor for each of the BRBF dual systems has been determined separately, and the tentative value of 10.47 has been suggested for allowable stress design method. It is also included that the ductility, overstrength and response modification factors for all of the models were decreased when the height of the building was increased.

Evaluation of Response Modification Factors for Shear Wall Apartment Building (벽식 APT의 반응수정계수 추정에 관한 연구)

  • 송정원;송진규;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.859-864
    • /
    • 2001
  • For earthquake resistance design, a response modification factor is used to reduce the design strength and it reflects ductility, reserve strength, redundancy and damping effect. But this factor has not theoretical basis. In this study, two response modification factors are compared and analyzed for shear wall apartment building.; the one is introduced by ATC-19 Procedures, the other is suggested FEMA-273 and ATC-40 through nonlinear static analysis. For the results, ATC-19 procedure gives a reasonable estimation to R factor. But $R_{u}$ by using FEAM-273 and ATC-40 methods is estimated so small in case of a minor or moderate earthquake region. Due to this fact, response modification factor is smaller than suggested load criterion 3.0. So, it needs to decrease wall volume and reduce the global strength and system stiffness for proper ductile behavior matching to domestic load criterion.

  • PDF

Response modification and seismic design factors of RCS moment frames based on the FEMA P695 methodology

  • Mohammad H. Habashizadeh;Nima Talebian;Dane Miller;Martin Skitmore;Hassan Karampour
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.47-64
    • /
    • 2023
  • Due to their efficient use of materials, hybrid reinforced concrete-steel (RCS) systems provide more practical and economic advantages than traditional steel and concrete moment frames. This study evaluated the seismic design factors and response modification factor 'R' of RCS composite moment frames composed of reinforced concrete (RC) columns and steel (S) beams. The current International Building Code (IBC) and ASCE/SEI 7-05 classify RCS systems as special moment frames and provide an R factor of 8 for these systems. In this study, seismic design parameters were initially quantified for this structural system using an R factor of 8 based on the global methodology provided in FEMA P695. For analyses, multi-story (3, 5, 10, and 15) and multi-span (3 and 5) archetypes were used to conduct nonlinear static pushover analysis and incremental dynamic analysis (IDA) under near-field and far-field ground motions. The analyses were performed using the OpenSees software. The procedure was reiterated with a larger R factor of 9. Results of the performance evaluation of the investigated archetypes demonstrated that an R factor of 9 achieved the safety margin against collapse outlined by FEMA P695 and can be used for the design of RCS systems.

Rational Evaluation of Seismic Response Modification Factor of Steel Moment Frame Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 철골모멘트골조의 반응수정계수 산정법)

  • Lee, Cheol-Ho;Kim, Geon-Woo;Song, Jin-Gyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.11-17
    • /
    • 2007
  • In current seismic design practice, the response modification factor (R-factor) is used as a factor to reduce the elastic base shear demand to the design force level. As is well-known, the R-factor is a committee-consensus factor and, as such, highly qualitative and empirical. The relationship between the R-factor and the connection rotation capacity available in a particular structural system has remained a missing link. In this paper, a rational procedure to evaluate the R-factor is proposed. To this end, the relationship between the available connection rotation capacity and the R-factor is defined and quantified using nonlinear pushover analysis. An RRS steel frame designed according to IBC 2000 was used to illustrate and verify the proposed procedure. Nonlinear time history analysis results indicated that the R-factor definition proposed in this study is generally conservative from design perspective.

Evaluation of the Response Modification Factor for RC Wall-type Structures (철근콘크리트 벽식 구조물의 반응수정계수 평가에 관한 연구)

  • 한상환;이리형;오영훈;천영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.433-438
    • /
    • 1998
  • Design lateral strength calculated by current seismic design code is prescribed to be much lower than the force level required for a structure to respond elastically during design level earthquake ground motion. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factor known as "response modification factor, R". This factor accounts for the inherent ductility, overstrength, redundancy, and damping of a structural system. This study considers ductility and overstrength of the wall-type structure for investigating R factor. This means that R factor is determined from the product of "ductility-based R factor($R_$\mu$$) and overstrength factor($R_s$). $R_$\mu$$ factor is calibrated to attain the targer ductility ratio (system ductility capacity) and produced in the from of $R_$\mu$$ spectra considering the influence of target ductility, natural period, and hysteretic model. On the other hand, $R_s$ is more difficult to quantify, since it depends on both material and system-dependent uncertain parameters. In this study Rs factor was determined from the result of push-over analysis.-over analysis.

  • PDF

Performance-based design of tall buildings for wind load and application of response modification factor

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.153-164
    • /
    • 2020
  • In the design of buildings, lateral loading is one of the most important factors considered by structural designers. The concept of performance-based design (PBD) is well developed for seismic load. Whereas, wind design is mainly based on elastic analysis for both serviceability and strength. For tall buildings subject to extreme wind load, inelastic behavior and application of the concept of PBD bear consideration. For seismic design, current practice primarily presumes inelastic behavior of the structure and that energy is dissipated by plastic deformation. However, due to analysis complexity and computational cost, calculations used to predict inelastic behavior are often performed using elastic analysis and a response modification factor (R). Inelastic analysis is optionally performed to check the accuracy of the design. In this paper, a framework for application of an R factor for wind design is proposed. Theoretical background on the application and implementation is provided. Moreover, seismic and wind fatigue issues are explained for the purpose of quantifying the modification factor R for wind design.

An Evaluation Study On Response Modification Factor of Unreinforced Mansonry Structure (비보강 조적조 건축물의 반응수정계수 설정에 관한 연구)

  • Kwon, Ki-Hyuk;Lee, Yong-Hwan;Yi, Waon-Ho;Lee, Jung-Han;Kang, Dae-Eon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.33-36
    • /
    • 2007
  • This study shows the basic data for setting up a response modification factor of unreinforcement masonry structure by considering and analyzing the experiment results of the domestic walls. If the result of this study compare with the value R of KBC-2005, 1.5, the average value, 1.2, is the low value. However, the maximum value, 2.57, is more than 70% bigger than the standard value. The standard value of overstrength factor, 2.5 is judged to have relatively bigger value than this study.

  • PDF