• Title/Summary/Keyword: Response Modification Factor

Search Result 160, Processing Time 0.032 seconds

An investigation of seismic parameters of low yield strength steel plate shear walls

  • Soltani, Negin;Abedi, Karim;Poursha, Mehdi;Golabi, Hassan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Steel plate shear walls (SPSWs) are effective lateral systems which have high initial stiffness, appropriate ductility and energy dissipation capability. Recently, steel plate shear walls with low yield point strength (LYP), were introduced and they attracted the attention of designers. Structures with this new system, besides using less steel, are more stable. In the present study, the effects of plates with low yield strength on the seismic design parameters of steel frames with steel plate shear walls are investigated. For this purpose, a variety of this kind of structures with different heights including the 2, 5, 10, 14 and 18-story buildings are designed based on the AISC seismic provisions. The structures are modeled using ANSYS finite element software and subjected to monotonic lateral loading. Parameters such as ductility (${\mu}$), ductility reduction ($R_{\mu}$), over-strength (${\Omega}_0$), displacement amplification ($C_d$) and behavior factor (R) of these structures are evaluated by carrying out the pushover analysis. Analysis results indicate that the ductility, over-strength and behavior factors decrease by increasing the number of stories. Also, the displacement amplification factor decreases by increasing the number of stories. Finally, the results were compared with the suggestions provided in the AISC code for steel plate shear walls. The results indicate that the values for over-strength, behavior and displacement amplification factors of LYP steel plate shear wall systems, are larger than those proposed by the AISC code for typical steel plate shear wall systems.

The Study on the Structural Behavior of Concrete-filled Composite Piers (콘크리트충전 강합성 교각의 구조적 거동에 관한 연구)

  • 김유경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

A Study on Seismic Capacity of Circular Spiral Reinforced Concrete Bridge Piers used in High Strength Concrete (고강도 원형나선철근기둥의 내진성능에 관한 연구)

  • 김광수;김민구;배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.547-552
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and capacity assessment of circular spiral reinforcement concrete bridge piers used in high strength concrete. The displacement ductility, response modification factor(R), effective stiffness and plastic hinge region etc. was used to assess the seismic behavior and capacity of circular spiral reinforcement concrete bridge piers. The experimental variables of bridge piers test consisted of amount and spacing, different axial load levels. From the quasi-static tests on 9 bridge piers and analysis, it is found that current seismic design code specification of transverse confinement steel requirements and details may be revised.

  • PDF

Novel Current Compensation Technique for Harmonic Current Elimination (고조파 전류 제거를 위한 새로운 전류 보상 기법)

  • Jeong Gang-Youl
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.587-591
    • /
    • 2004
  • This paper proposes a novel current compensation technique that can eliminate the harmonic currents included in line currents without computation of harmonic current components. A current controller with fast dynamics for an active filter is described. Harmonic currents are directly controlled without the need for sensing and computing the harmonic current of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The DC voltage control loop keeps the voltage across the DC capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a single-chip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.

  • PDF

Ductility Based Seismic Design of Circular R/C Bridge Piers (원형 철근콘크리트 교각의 연성도 내진설계)

  • Choi Jin Ho;Ko Seong Hyun;Hwang Jung Kil;Lee Jea Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • This study is to develop detailing guidelines based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2005) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor (R=3 or 5) is used. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. The objective of this paper is to suggest a new simplified seismic design of reinforced concrete bridge columns for moderate seismicity regions.

  • PDF

Ductility Demand based Seismic Design for RC Bridge Columns (철근콘크리트 교각의 연성요구량에 따른 내진설계)

  • 이재훈;손혁수;고성현;최진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.316-321
    • /
    • 2002
  • The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2000) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor is used. For the moderate seismicity regions, a design based on required ductility and required transverse reinforcement might be a reasonable approach. Ductility demand design or performance based design might be an appropriate approach especially for regions of moderate seismic risk. The procedure and application of this design approach are presented in this paper.

  • PDF

Seismic performance of Piers in Seohae Grand Bridge (서해대교 PSM교 교각의 내진성능)

  • 이재훈;손혁수;배성용;박찬민
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.67-81
    • /
    • 2000
  • 서해대교는 국내에 교량구조물에 관한 내진설계가 도입되기 전 설계된 교량으로서 현재 내진설계 규준에 적합하지 않은 종방향철근 및 횡방향 철근이 겹침이음된 중공육각형 단면의 철근콘크리트 기둥으로 이미 시공이 완료된 상태이다. 최근, 지진에 대한 사회적 관심이 대두됨으로서 내진 설계 규준에 적합하지 않은 철근상세를 가지 서해대교 PSM교 교각의 내진성능이 의문시되었다. 따라서, 비내진 철근상세를 가진 서해대교 PSM교 교각의내진성능 평가를 위하여 교각의 축소모형 실험을 수행하였으며, 실험결과 종방향철근 겹침이음이 교각의 전체적인 내진거동에는 큰 영향을 미치지 않으며 기대 이상의 연성을 발휘할 수 있는 것으로 나타났다. 본 논문에서는 축소모형 실험결과에 의한 시험체의 파괴양상, 유효강성, 연성, 응답수 정계수 및 등가점성감쇠비를 분석하였으며, 아울러 가속도변위 응답스펙트럼을 이용하여 서해대교 PSM교 교각의 내진성능을 평가하였다.

  • PDF

A Study on the Equivalent Static Analysis of Unreinforced Masonry Buildings (비보강 조적조 건물의 등가 정적 해석에 관한 연구)

  • 정상훈;김관중;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • 우리 나라의 주거 건물의 많은 부분을 차지하는 조적조 건물은 저층이므로 내진 설계에 대한 지침이 마련되어 있지 않다. 그러나 조적조 건물의 경우 저층이라 하더라도 구조특성상 수평하중에 대한 저항능력이 매우 약하므로 내진 설계에 대한 기준이 요구된다. 일반적으로 내진설계 시 동적 해석을 수행하면 많은 시간이 소모되므로 실무자들에게 등가정적해석법을 제시하여 내진설계 시 편의를 제공하고 있다. 그러나 저층 조적조 건물은 일반적인 건물과는 거동 특성이 다르므로 저층 조적조 건물에 적용할 수 있는 해석법을 제시하고자 한다. 본 논문에서는 개구부의 비율에 따른 조적벽의 연성도, 강도 및 고유주기를 구하여 반응수정계수와 고유주기를 비교하여 우리 나라의 조적조 건물에 적합한 반응수정계수와 고유주기 산정식을 제안하였다.

  • PDF

Design Modification of Bearing Walkout of Water Pump by a Finite Element Analysis (유한요소해석을 이용한 워터펌프 베어링돌출 설계 개선)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2006
  • A systematic methodology has been proposed to establish a reliable design of water pump system. A simplified steady-state dynamic model of water pump system has been developed to study the response of water pump system to the dynamic load mainly due to the run-out and unbalance. Design modifications are needed to strengthen the structural integrity of existing designs. Increasing the natural frequency of system is pursued to prevent a resonance from occurring in the engine excitation range. A computational reliability methodology combined with finite element analysis is used to identify the most significant factor affecting the system performance. This method considered influence of design control parameters for the performance of design. By including control factors to the system model in a systematic way, more reliable design is expected.

An Improvement for Evaluating Load Carrying Capacity of Long Span Bridge with respect to Passing Vehicles (통행차량에 의한 장대교량의 내하력 평가기법 개선)

  • Shin Jae-In;Park Chang-Ho;Lee Sang-Soon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.339-342
    • /
    • 2005
  • This paper presents the development of a method for determining the response modification factor, using traffic load. The proposed method is based on the results of computer simulations of traffic action effects. The simulation program generates random traffic actions for defined traffic conditions and determines the frequency distribution of maximum traffic action effects. Therefore, this study is adopted to long-span bridge for the verification of the proposed method. A comparison between the proposed method and present method shows good agreement in estimating the modified load carrying capacity of bridges.

  • PDF