• Title/Summary/Keyword: Response Load

Search Result 2,982, Processing Time 0.026 seconds

Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load

  • Tahami, F. Vakili;Biglari, H.;Raminnea, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.515-526
    • /
    • 2017
  • Dynamic response of functionally graded Carbon nanotubes (FG-CNT) reinforced pipes conveying viscous fluid under accelerated moving load is presented. The mixture rule is used for obtaining the material properties of nano-composite pipe. The radial force induced by viscous fluid is calculated by Navier-Stokes equation. The material properties of pipe are considered temperature-dependent. The structure is simulated by Reddy higher-order shear deformation shell theory and the corresponding motion equations are derived by Hamilton's principal. Differential quadrature (DQ) method and the Integral Quadrature (IQ) are applied for analogizing the motion equations and then the Newmark time integration scheme is used for obtaining the dynamic response of structure. The effects of different parameters such as boundary conditions, geometrical parameters, velocity and acceleration of moving load, CNT volume percent and distribution type are shown on the dynamic response of pipe. Results indicate that increasing CNTs leads to decrease in transient deflection of structure. In accelerated motion of the moving load, the maximum displacement is occurred later with respect to decelerated motion of moving load.

Feasibility Analysis of the Bridge Analytical Model Calibration with the Response Correction Factor Obtained from the Pseudo-Static Load Test (의사정적재하시험 응답보정계수에 의한 교량 해석모델 보정의 타당성 분석)

  • Han, Man-Seok;Shin, Soo-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.50-59
    • /
    • 2021
  • Currently, the response correction factor is calculated by comparing the response measured by the load test on a bridge with the response analyzed in the initial analytical model. Then the load rating and the load carrying capacity are evaluated. However, the response correction factor gives a value that fluctuates depending on the measurement location and load condition. In particular, when the initial analytical model is not suitable for representing the behavior of a bridge, the range of variation is large and the analysis response by the calibrated model may give a result that is different from the measured response. In this study, a pseudo-static load test was applied to obtain static response with dynamic components removed under various load conditions of a vehicle moving at a low speed. Static response was measured on two similar PSC-I girder bridges, and the response correction factors for displacement and strain were calculated for each of the two bridges. When the initial analysis model was not properly set up, it is verified that the response of the analytical model corrected by the average response correction factor does not fall within the margin of error with the measured response.

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.

The Seismic Response Analysis of Lattice Dome According to Direction of Seismic Load (래티스돔의 지진 하중 방향에 따른 지진 응답 분석)

  • Kim, Yu-Seong;Kang, Joo-Won;Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • Vertical earthquake motions can occur along with horizontal earthquakes, so that Structure should be designed to resist Seismic loads in all directions. Especially, due to the dynamic characteristics such as the vibration mode, when the vertical seismic load, the dynamic response of the Spatial structure is large. In this study, the seismic response of the lattice dome to horizontal and vertical seismic loads is analyzed, and a reasonable seismic load combination is analyzed by combining horizontal and vertical seismic response results. In the combination of the horizontal seismic load, the largest result is obtained when the direction of the main axis of the structure coincides with the direction of seismic load. In addition, the combination of vertical seismic load and horizontal seismic load was the largest compared with the combination of horizontal seismic load. Therefore, it is considered that the most reasonable and stable design will be achieved if the seismic load in vertical direction is considered.

A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in Distributed Systems

  • Lee, Seong-Hoon
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2008
  • A load sharing algorithm is one of the important factors in computer system. In sender-initiated load sharing algorithms, when a distributed system becomes to heavy system load, it is difficult to find a suitable receiver because most processors have additional tasks to send. The sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. Because of these unnecessary request messages it results in inefficient communications, low cpu utilization, and low system throughput. To solve these problems, we propose a self-adjusting evolutionary algorithm for improved sender-initiated load sharing in distributed systems. This algorithm decreases response time and increases acceptance rate. Compared with the conventional sender-initiated load sharing algorithms, we show that the proposed algorithm performs better.

Dynamic response of a Timoshenko beam to a continuous distributed moving load

  • Szylko-Bigus, Olga;Sniady, Pawel
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.771-792
    • /
    • 2015
  • In the paper we study dynamic response of a finite, simply supported Timoshenko beam subject to a moving continuously distributed forces. Three problems have been considered. The dynamic response of the Timoshenko beam under a uniform distributed load moving with a constant velocity v has been considered as the first problem. Obtained solutions allow to find the response of the beam under the interval of the finite length a uniformly distributed moving load. Part of the solutions are presented in a closed form instead of an infinite series. As the second problem the steady-state vibrations of the beam under uniformly distributed mass $m_1$ moving with the constant velocity has been considered. The vibrations of the beam caused by the interval of the finite length randomly distributed load moving with constant velocity is considered as the last problem. It is assumed that load process is space-time stationary stochastic process.

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load (등가하중을 이용한 비선형 정적 응답 위상최적설계의 기초연구)

  • Lee, Hyun-Ah;Zeshan, Ahmad;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1811-1820
    • /
    • 2010
  • Most components in the real world show nonlinear response. The nonlinearity may arise because of contact between the parts, nonlinear material, or large deformation of the components. Structural optimization considering nonlinearities is fairly expensive because sensitivity information is difficult to calculate. To overcome this difficulty, the equivalent load method was proposed for nonlinear response optimization. This method was originally developed for size and shape optimization. In this study, the equivalent load method is modified to perform topology optimization considering all kinds of nonlinearities. Equivalent load is defined as the load for linear analysis that generates the same response field as that for nonlinear analysis. A simple example demonstrates that results of the topology optimization using equivalent load are very similar to the numerical results. Nonlinear response topology optimization is performed with a practical example and the results are compared with those of conventional linear response topology optimization.

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

A Study of Optimal Load Follow Control in Pressurized Water Reactors (감압경수형 원자로의 최적부하추종제어에 관한 연구)

  • 김락규;박상휘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.12
    • /
    • pp.491-497
    • /
    • 1985
  • An applicaton of the linear optimal control theory to the problem or load follow control in pressurized water reactors (PWR) is investigated. In order to perform the steady-state and load follow operation in PWR, a nonlinear model for the reactor and steam generator is derived and linearized at 50% rated power. Simulation tests are performed for 10% demanded load. Comparing the dynamic response of the newly developed optimal load follow controller with those of the integral error feedback controller proposed by Yang, the rise time of dynamic response of the former is about 15 seconds faster than those of the latter, thus the results indicate that the fast response of the optimal load follow controller is verified. The results of this work are directly applicable to the design of the load follow control systems for commercially operated PWRs.

  • PDF