DOI QR코드

DOI QR Code

Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load

등가하중을 이용한 비선형 정적 응답 위상최적설계의 기초연구

  • Received : 2010.03.09
  • Accepted : 2010.10.13
  • Published : 2010.12.01

Abstract

Most components in the real world show nonlinear response. The nonlinearity may arise because of contact between the parts, nonlinear material, or large deformation of the components. Structural optimization considering nonlinearities is fairly expensive because sensitivity information is difficult to calculate. To overcome this difficulty, the equivalent load method was proposed for nonlinear response optimization. This method was originally developed for size and shape optimization. In this study, the equivalent load method is modified to perform topology optimization considering all kinds of nonlinearities. Equivalent load is defined as the load for linear analysis that generates the same response field as that for nonlinear analysis. A simple example demonstrates that results of the topology optimization using equivalent load are very similar to the numerical results. Nonlinear response topology optimization is performed with a practical example and the results are compared with those of conventional linear response topology optimization.

실제 대부분의 공학 문제들은 크고 작은 비선형성을 내포한다. 구조물의 최적설계 과정에서는 다수의 구조물 사이에 발생하는 접촉이나 비선형 물성치를 가지는 재료, 또는 대변형을 고려해야만 한다. 그러나 민감도 계산이 고가이기 때문에 비선형성을 최적화에 고려하는 것은 매우 어렵다. 따라서 비선형 정적 반응 위상최적설계를 위하여 등가하중법을 사용한다. 등가하중이란 비선형 해석에서 유발되는 반응장과 동일한 반응장을 유발하는 선형 정적하중이다. 등가하중법은 치수/형상최적설계를 위하여 연구되어 왔다. 위상최적설계는 치수/형상최적설계에 비하여 설계변수가 많기 때문에 기존의 등가하중법을 그대로 적용할 수 없기 때문에 위상최적설계를 위하여 등가하중법을 확장하고 수정한다. 간단한 예제를 통하여 등가하중법을 이용한 위상최적설계 결과가 수치적으로 도출한 결과와 유사함을 보이고 실제 공학 예제의 위상최적설계를 통하여 기존의 선형 정적 위상최적설계와 결과를 비교한다.

Keywords

References

  1. Bendsoe, M.P. and Kikuchi, N., 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Method in Applied Mechanics and Engineering, Vol. 71, Issue 2, pp. 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  2. Bendsoe, M.P., 1989, “Optimal Shape Design as a Material Distribution Problem,” Structural Optimization, Vol. 1, No. 4, pp. 193-202. https://doi.org/10.1007/BF01650949
  3. Park, G.J., 2007, Analytic Methods for Design Practice, Springer, Germany, pp. 237-243.
  4. Yuge, K., Iwai, N. and Kikuchi, N., 1999, “Optimization of 2-D structures Subjected to Nonlinear Deformations Using the Homogenization Method,” Structural Optimization, Vol. 17, No. 4, pp. 286-299. https://doi.org/10.1007/BF01207005
  5. Buhl, T., Pedersen, C.B.W. and Sigmund, O., 2000, “Stiffness Design Of Geometrically Nonlinear Structures Using Topology Optimization,” Structural and Multidisciplinary Optimization, Vol. 19, No. 2, pp. 93-104. https://doi.org/10.1007/s001580050089
  6. Mayer, R.R., Kikuchi, N. and Scott, R.A., 1996, “Application of Topological Optimization Techniques to Structural Crashworthiness,” International Journal for Numerical Methods in Engineering, Vol. 39, Issue 8, pp. 1383-1403. https://doi.org/10.1002/(SICI)1097-0207(19960430)39:8<1383::AID-NME909>3.0.CO;2-3
  7. Jung, D.Y. and Gea, H.C., “Topology Optimization of Nonlinear Structures,” Finite Elements in Analysis and Design, Vol. 40, Issue 11, pp. 1417-1427. https://doi.org/10.1016/j.finel.2003.08.011
  8. Arora, J.S., 2004, Introduction to Optimum Design, second ed., Elsevier, CA, USA.
  9. Haftka, R.T and Gurdal, Z., 1992, Elements of Structural Optimization, Kluwer Academic Publishers, Netherlands.
  10. Choi, K.K. and Santos, J.L.T., 1987, “Design Sensitivity Analysis of Nonlinear Structural Systems Part I: Theory,” International Journal for Numerical Methods in Engineering, Vol. 24, No. 11, pp. 2039-2055. https://doi.org/10.1002/nme.1620241103
  11. Trier, S.D. Marthinsen, A. and Sivertsen, O.I., 1996, “Design sensitivities by the Adjoint Variable Method in Nonlinear Structural Dynamics,” SIMS Simulation Conference, Trondheim, Norway.
  12. Vidal, C.V. and Haber, R.B., 1993, “Design Sensitivity Analysis for Rate-independent Elastoplasticity,” Computer Methods in Applied Mechanics and Engineering, Vol. 107, No. 3, pp. 393-431. https://doi.org/10.1016/0045-7825(93)90074-8
  13. Shin, M.K., Park, K.J. and Park, G.J., 2007, “Optimization of Structures with Nonlinear Behavior Using Equivalent Loads,” Computers Methods in Applied Mechanics and Engineering, Vol. 196, Issue 4-6, pp. 1154-1167. https://doi.org/10.1016/j.cma.2006.09.001
  14. Park, G.J. and Kang, B.S., 2003, “Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads,” Trans. of the KSME (A), Vol. 27, No. 2, pp. 268-275.
  15. Park, G.J. and Kang, B.S., 2003, “Validation of Structural Optimization Algorithm Transformation Dynamic Loads into Equivalent Static Loads,” Journal of Optimization Theory and Applications, Vol. 118, No. 1, pp. 191-200. https://doi.org/10.1023/A:1024799727258
  16. Kim, Y.I, Park, G.J., Kolonay, R.M., Blair, M. and Canfield, R.A., 2008, “Nonlinear Response Structural Optimization of a Joined-Wing using Equivalent Loads,” AIAA Journal, Vol. 46, No. 11, pp. 2703-2713. https://doi.org/10.2514/1.33428
  17. Kim, D.W., Lee, H.A., Song, K.N., Kim, Y.I. and Park, G.J., 2007, “Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads,” Trans. of the KSME (A), Vol. 31, No. 12, pp. 1165-1172.
  18. Kim, Y.I. and Park, G.J., 2007, “Case Studies of Nonlinear Response Structural Optimization Using Equivalent Loads,” Trans. of the KSME (A), Vol. 31, No. 11, pp. 1059-1068.
  19. Bathe, K.J., 1996, Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs, NJ, USA.
  20. Cook, R.D, Malkus, D.S., Plesha, M.E. and Witt, R.J., 2002, Concepts and Applications of finite Element Analysis, 4th edition, pp. 595-638.
  21. Reddy, J.N., 2004, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press., NY, USA.
  22. MSC. NASTRAN 2008 Reference Manual, 2008, MSC Software Corporation.
  23. Shin, M.K., Lee, H.A., Lee, J.J., Song. K.N. and Park, G.J., 2008, “Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology Constraints,” Nuclear Engineering and Design, Vol. 238, Issue 10, pp. 2624-2634. https://doi.org/10.1016/j.nucengdes.2008.04.003

Cited by

  1. Topology Optimization for Structures With Nonlinear Behavior Using the Equivalent Static Loads Method vol.134, pp.3, 2012, https://doi.org/10.1115/1.4005600
  2. Study of Blank Thickness Optimization in Free Bulging for Maximizing Bulged Height vol.38, pp.8, 2014, https://doi.org/10.3795/KSME-A.2014.38.8.899
  3. Optimization of the Television Packing System Using Equivalent Static Loads vol.39, pp.3, 2015, https://doi.org/10.3795/KSME-A.2015.39.3.311