• Title/Summary/Keyword: Response Function

Search Result 4,853, Processing Time 0.03 seconds

System Identification of In-situ Vehicle Output Torque Measurement System (차량 출력 토크 측정 시스템의 시스템 식별)

  • Kim, Gi-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 만족도 함수를 통한 다중반응표면 최적화)

  • Gwon Jun-Beom;Lee Jong-Seok;Lee Sang-Ho;Jeon Chi-Hyeok;Kim Gwang-Jae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.39-44
    • /
    • 2004
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation as well as distance-to-target of response and response variance. The variation of process parameters amplifies the variance of responses. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameters, this variability should be considered in the optimization problem. The proposed method is illustrated using a rubber product case.

  • PDF

Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function (주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석)

  • 강성구;지태한;유원희;박영필
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

A direct treatment of Min-Max dynamic response optimization problems (Min-Max형 동적 반응 최적화 문제의 직접 처리기법)

  • 박흥수;김종관;최동훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 1993
  • A direct treatment of the min-max type objective function of the dynamic response optimization problem is proposed. Previously, the min-max type objective function was transformed to an artificial design variable and an additional point-wise state variable constraint function was imposed, which increased the complexity of the optimization problem. Especially, the design sensitivity analysis for the augmented Lagrangian functional with the suggested treatment is established by using the adjoint variable method and a computer program to implement the proposed algorithm is developed. The optimization result of the proposed treatment are obtained for three typical problems and compared with those of the previous treatment. It is concluded that the suggested treatment in much more efficient in the computational effort than the previous treatment with giving the similar optimal solutions.

  • PDF

A High-Speed Fuzzy Processor Using Bipolar Technology

  • Ishizuka, Okihiko;Masuda, Tsutomu;Tang, Zeng;Matsumoto, Hiroki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.933-936
    • /
    • 1993
  • A high speed fuzzy processor using bipolar technology is proposed in this paper. The hardware system uses a high-speed current-mode membership function circuit and normalization technique. The new membership function circuit generates an ideal membership function of the fuzzy set and its circuit is also simple and available for VLSI implementation. Several techniques have been implemented to speed up response of the processor. The fuzzy processor has been designed and implemented in bipolar circuit technology. The experiments and simulations show that the response speed is below 100ms. It can also be expected that the fuzzy processor can be integrated on one chip and its response time is only about the order of nanoseconds.

  • PDF

Development of a TFM load calculation program based on thermal response factor (열응답계수를 이용한 TFM 부하계산법의 제안)

  • 최우영;고철균;이재헌;류해성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.684-691
    • /
    • 1999
  • A load calculation program based on TFM(Transfer function method) has been proposed in this study. The validity of the current method has been verified by comparing heat gain calculation by TRF(Thermal response factor) with that by CTF(Conduction transfer function) adopted in ASHRAE. In addition, it seems that the CTF coefficients given in ASHRAE tables have somewhat ambiguity The load calculation program developed in the current study has been employed to calculate cooling load from the exterior walls and roof of example 6 in the ASHRAE. The results are found in good agreement.

  • PDF

Serial pendulum DVA design using Genetic Algorithm (GA) by considering the pendulum nonlinearity

  • Lovely Son;Firman Erizal;Mulyadi Bur;Agus Sutanto
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.549-556
    • /
    • 2024
  • A serial pendulum dynamic vibration absorber (DVA) was designed to suppress the vibration of two degrees of freedom (Two-DOF) structure model. The optimal DVA parameters are selected using a genetic algorithm (GA) by minimizing the fitness function formulated from the system's frequency response function (FRF). Two fitness function criteria, using one and two target frequency ranges, were utilized to calculate the optimal DVA parameters. The optimized serial pendulum DVA parameters were used to reduce structural vibration under free and forced excitation conditions. The simulation study found that the serial pendulum DVA can effectively reduce the vibration response for a small excitation amplitude. However, the DVA performance decreases for a large excitation amplitude due to the nonlinearity of pendulum motion, and the percentage of vibration response attenuation is smaller than that obtained using a small excitation amplitude.

Sliding Mode Control with Target Variation Rate of Lyapunov Function for Seismic-Excited Structures (Lyapunov함수의 목표 변화율을 이용한 가진된 건물의 슬라이딩 모드 제어)

  • 이상현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.163-171
    • /
    • 2001
  • This paper presents sliding mode control(SMC) method using target variation rate of Lypunov Function. SMC keeps the response of structure in sliding surface where structure is stable. It can design both linear controller and bang-bang controller. Linear control of previous research, however, can not make most of the performance of controller, because it is designed to satisfy the condition that the variation rate of Lyapunov function is minus. Also, incase of bang-bang controller, unnecessary large control force is generated. Presented method can utilize the capacity of controller efficiently by prescribing the target variation rate of Lyapunov function. Numerical simulation results indicate that the presented control methods can reduce the peak response larger than linear control, and it has control performance equivalent to bang-bang control.

  • PDF

$H{\infty}$ optimal controller robustness and performance improvement by frequency domain analysis of open loop transfer function (개루프 전달함수 주파수영역 해석에 의한 $H{\infty}$ 최적 제어기의 견실성 및 성능 개선)

  • Kim, Y.K.;Ryu, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.761-763
    • /
    • 1999
  • When the controller designed by the $H{\infty}$ control technique is applied to the object system, sometimes the controller does not satisfy the robust stability and robust performance but only satisfy the nominal performance. In this paper, we derive the region on the frequency response curve of the open-loop transfer function which satisfy the robustness and robust performance of the designed controller. We also derive the region for the suitableness of the weighting function on the frequency response curve of the weighting function. We showed that the robust stability and the robust performance of the $H{\infty}$ optimal control)or by applying the designed controller on an electromechanical actuator system could be improved by determining parameter ${\gamma}$ and weighting function gain ${\alpha}$ using the derived region.

  • PDF