• Title/Summary/Keyword: Respiratory Motion

Search Result 170, Processing Time 0.028 seconds

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation

  • Chung, Hyekyun;Cho, Seungryong;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • Intrafractional motion of patients, such as respiratory motion during radiation treatment, is an important issue in image-guided radiotherapy. The accuracy of the radiation treatment decreases as the motion range increases. We developed a control system for a robotic patient immobilization system that enables to reduce the range of tumor motion by compensating the tumor motion. Fusion technology, combining robotics and mechatronics, was developed and applied in this study. First, a small-sized prototype was established for use with an industrial miniature robot. The patient immobilization system consisted of an optical tracking system, a robotic couch, a robot controller, and a control program for managing the system components. A multi speed and position control mechanism with three degrees of freedom was designed. The parameters for operating the control system, such as the coordinate transformation parameters and calibration parameters, were measured and evaluated for a prototype device. After developing the control system using the prototype device, a feasibility test on a full-scale patient immobilization system was performed, using a large industrial robot and couch. The performances of both the prototype device and the realistic device were evaluated using a respiratory motion phantom, for several patterns of respiratory motion. For all patterns of motion, the root mean squared error of the corresponding detected motion trajectories were reduced by more than 40%. The proposed system improves the accuracy of the radiation dose delivered to the target and reduces the unwanted irradiation of normal tissue.

MRI Artifact Correction due to Unknown Respiratory Motion (미지 호흡운동에 의한 MRI 아티팩트의 수정)

  • 김응규
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.53-62
    • /
    • 2004
  • In this study, an improved post-processing technique for correcting MRI artifact due to the unknown respiratory motion in the imaging plane is presented. Respiratory motion is modeled by a two-Dimensional linear expending-shrinking movement. Assuming that the body tissues are incompressible fluid like materials, the proton density per unit volume of the imaging object is kept constant. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimatead a reconstruction algorithm based on biliner superposition method was used to correct the MRI artifact. In the case of motion parameters are unknown, first, the spectrum shift method is applied to find the respiratory fluctuation function, x directional expansion coefficient and x directional expansion center. Next, y directional expansion coefficient and y directional expansion center are estimated by using the minimum energy method. Finally, the validity of this proposed method is shown to be effective by using the simulated motion images.

Development of Respiratory Monitoring System by Inductive Plethysmography (인덕턴스 호흡감시 시스템의 개발)

  • Kim, Deok-Won;Yeon, Dong-Su;Kim, Su-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.353-358
    • /
    • 1995
  • The impedance pneumography which is widely used in monitoring respiration is simple to use and noninvasive, but it is sensitive to motion artifacts and insensitive to detect obstructive apnea. A 3-channel respiratory inductive plethysmography (RIP) developed in this study detects inductance change of the inductance band induced by cross-sectional area change of thorax or abdomen as one breathes. It was confirmed that RIP was less sensitive to various motion artifacts but more sensitive to detection of obstructive apnea than impedance pneumography.

  • PDF

Motion Correction in PET/CT Images (PET/CT 영상 움직임 보정)

  • Woo, Sang-Keun;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법)

  • Kim, Ho-Joon;Cho, Yun-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

Study of Variation of Internal Taget Volume between 4DCT and Slow-CT in Respiratory Patterns Using Respiratory Motion Phantom (호흡 동조 구동 팬톰을 이용한 호흡패턴에 따른 4DCT, Slow-CT의 내부표적체적 변화 연구)

  • Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Ji, Young Hoon;Kim, Mi-Sook;Yoo, Hyoung Jun;Kim, Chan Hyeong;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.53-63
    • /
    • 2014
  • The objective of this study is to investigate the difference of ITV lengths and ITVs between 4DCT and Slow-CT images according to respiratory patterns using a respiratory motion phantom. The respiratory periods 1~4 s and target motion 1~3 cm were applied on each respiratory pattern. 4DCT and Slow-CT images were acquired for 3 times. 4DCT and Slow-CT ITVs were measured with contouring the target in the Eclipse RTP system. The measured ITV lenghts and ITVs in 4DCT and Slow-CT images were compared to the known values. For the ITV lengths and ITVs in the 4DCT, the difference of them were reduced as the respiratory period is longer and target motion is shorter. For the Slow-CT, there was same tendency with change in 4DCT ITV lengths and ITVs about target motion. However, the difference of ITV lengths and ITVs for the respiratory periods were the lowest in respiratory period 1 second and different slightly within respiratory period 2-4 seconds. According to the respiratory patterns, pattern A had the highest reproducibility. Pattern B, C and D were showed the difference similar to each other. However, for pattern E, the reproducibility was the lowest compared with other four patterns. The difference of ITV lengths and ITVs between Slow-CT and 4DCT was increased by increasing the respiratory periods and target motion for all respiratory patterns. When the difference of Slow-CT ITV lengths and ITVs were compared with that of 4DCT ITV lengths and ITVs, Slow-CT ITV lengths and ITVs were approximately 22 % smaller than 4DCT, and the representations of target were different in each pattern. In case of pattern A, B and C, length difference was 3 mm at S (superior) and I (inferior) direction, and the length difference of pattern D was 1.45 cm at only "I" direction whereas the length difference of pattern E was 5 mm longer in "S" direction than "I" direction. Therefore, the margin in SI directions should be determined by considering the respiratory patterns when the margin of Slow-CT is compensated for 4DCT ITV lengths. Afterward, we think that the result of this study will be useful to analyze the ITV lengths and ITVs from the CT images on the basis of the patient respiratory signals.

Optimal Respiratory Ordering Scheme (OROS) for Correcting Blurring Artifacts in Abdominal Magnetic Resonance Imaging (복부 핵자기공명 영상에서 영상번짐의 교정을 위한 최적 호흡 정렬법)

  • Jung, Kwan-Jin;Ahn, Woo-Youn;Cho, Zang-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.15-18
    • /
    • 1990
  • In abdominal NMR imaging the respiratory ordering techniques have been successfully used to remove the ghosting artifacts arising from the respiratory motion. In the existing respiratory ordering schemes, however, it is generally accepted that blurring of the moving parts still remains as in the signal averaging technique. A new optimal respiratory ordering scheme which can correct the blurring as well as the ghosting artifacts is theoretically derived through the analysis of the phase encoding directional motion effects in Fourier imaging. The performance of the optimal respiratory ordering scheme is experimentally confirmed together with a suboptimal ordering scheme which is suggested as a compromise for the practicality.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

Quasi-breath-hold (QBH) Biofeedback in Gated 3D Thoracic MRI: Feasibility Study (게이트 흉부자기 공명 영상법과 함께 사용할 수 있는 의사호흡정지(QBH) 바이오 피드백)

  • Kim, Taeho;Pooley, Robert;Lee, Danny;Keall, Paul;Lee, Rena;Kim, Siyong
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • The aim of the study is to test a hypothesis that quasi-breath-hold (QBH) biofeedback improves the residual respiratory motion management in gated 3D thoracic MR imaging, reducing respiratory motion artifacts with insignificant acquisition time alteration. To test the hypothesis five healthy human subjects underwent two gated MR imaging studies based on a T2 weighted SPACE MR pulse sequence using a respiratory navigator of a 3T Siemens MRI: one under free breathing and the other under QBH biofeedback breathing. The QBH biofeedback system utilized the external marker position on the abdomen obtained with an RPM system (Real-time Position Management, Varian) to audio-visually guide a human subject for 2s breath-hold at 90% exhalation position in each respiratory cycle. The improvement in the upper liver breath-hold motion reproducibility within the gating window using the QBH biofeedback system has been assessed for a group of volunteers. We assessed the residual respiratory motion management within the gating window and respiratory motion artifacts in 3D thoracic MRI both with/without QBH biofeedback. In addition, the RMSE (root mean square error) of abdominal displacement has been investigated. The QBH biofeedback reduced the residual upper liver motion within the gating window during MR acquisitions (~6 minutes) compared to that for free breathing, resulting in the reduction of respiratory motion artifacts in lung and liver of gated 3D thoracic MR images. The abdominal motion reduction in the gated window was consistent with the residual motion reduction of the diaphragm with QBH biofeedback. Consequently, average RMSE (root mean square error) of abdominal displacement obtained from the RPM has been also reduced from 2.0 mm of free breathing to 0.7 mm of QBH biofeedback breathing over the entire cycle (67% reduction, p-value=0.02) and from 1.7 mm of free breathing to 0.7 mm of QBH biofeedback breathing in the gated window (58% reduction, p-value=0.14). The average baseline drift obtained using a linear fit was reduced from 5.5 mm/min with free breathing to 0.6 mm/min (89% reduction, p-value=0.017) with QBH biofeedback. The study demonstrated that the QBH biofeedback improved the upper liver breath-hold motion reproducibility during the gated 3D thoracic MR imaging. This system can provide clinically applicable motion management of the internal anatomy for gated medical imaging as well as gated radiotherapy.