• 제목/요약/키워드: Respiration sensor

Search Result 101, Processing Time 0.022 seconds

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

Characteristics and Fabrication of Dissolved Oxygen and pH Measurement System based on the Optical Sensor for Analysis of Cell Metabolic Functions (세포대사 기능 분석을 위한 광학센서 기반 용존산소와 pH 측정 시스템의 제작 및 특성 분석)

  • Jang, Jiwoon;Hwang, Insook;Lee, Jongmok;Lee, Sunmin;Kang, Sora;Kim Pak, Youngmi;Kim, Nayoung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • This study evaluates the performance of an optical sensor and measurement system (CMA-24) which can analyze the fluctuation of dissolved oxygen and pH simultaneously. In the optical sensor system, the fluorescent materials, Rudpp and HPTS which are sensitive to dissolved oxygen and pH, respectively, are coated on the bottom of a 24-well -plate by the sol-gel technology. The detection times of the emission light of the oxygen sensor were $4,186{\pm}13.90{\mu}s$ and $4,452{\pm}36.68{\mu}s$ for the dissolved oxygen of 17% $O_2$ and 7.6% $O_2$, respectively. On the other hand, the detection times of the pH sensor were $6,699.43{\pm}14.64{\mu}s$, $6,722.24{\pm}6.21{\mu}s$, and $6,748.52{\pm}2.63{\mu}s$ using pH 6, 7, and 8, respectively. When we determined cellular respiration levels of C2C12 myocytes with CMA-24, $O_2$/pH measurement system, the ratio of the uncoupled to coupled OCR (oxygen consumption rate) was 1.41. The results mean that this CMA-24 system shows almost the same sensitiveness as the commercial system.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee Suk;Lee Sang Hoon;Shin Dongho;Yang Dae Sik;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

Measurement of Respiratory Motion Signals for Respiratory Gating Radiation Therapy (호흡동조 방사선치료를 위한 호흡 움직임 신호 측정)

  • Chung, Jin-Beom;Chung, Won-Kyun;Kim, Yon-Lae;Lee, Jeong-Woo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Respiration motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. Accounting for such motion during treatment, therefore, has the potential to reduce margins drawn around the clinical target volume (CTV), resulting in a lower dose to normal tissues (e.g., lung and liver) and thus a lower risk of treatment induced complications. Among the techniques that explicitly account for intrafraction motion are breath-hold, respiration gating, and 4D or tumor-tracking techniques. Respiration gating methods periodically turn the beam on when the patient's respiration signal is in a certain part of the respiratory cycle (generally end-inhale or end-exhale). These techniques require acquisition of some form of respiration motion signal (infrared reflective markers, spirometry, strain gauge, thermistor, video tracking of chest outlines and fluoroscopic tracking of implanted markers are some of the techniques employed to date), which is assumed to be correlated with internal anatomy motion. In preliminary study for the respiratory gating radiation therapy, we performed to measurement of this respiration motion signal. In order to measure the respiratory motion signals of patient, respiration measurement system (RMS) was composed with three sensor (spirometer, thermistor, and belt transducer), 4 channel data acquisition system and mobile computer. For two patients, we performed to evaluation of respiratory cycle and shape with RMS. We observed under this system that respiratory cycle is generally periodic but asymmetric, with the majority of time spent. As expected, RMS traced patient's respiration each other well and be easily handled for application.

  • PDF

Development of living body information and behavior monitoring system for nursing person

  • Ichiki, Ai;Sakamoto, Hidetoshi;Ohbuchi, Yoshifumi
    • Journal of Engineering Education Research
    • /
    • v.17 no.4
    • /
    • pp.15-20
    • /
    • 2014
  • The non-contact easy detecting system of nursing person's body vital information and their behaviors monitoring system are developed, which consist of "Kinect" sensor and thermography camera. The "Kinect" sensor can catch the body contour and the body moving behavior, and output their imaging data realtime. The thermography camera can detect respiration state and body temperature, etc. In this study, the practicability of this system was verified.

Unconstrained REM Sleep Monitoring Using Polyvinylidene Fluoride Film-Based Sensor in the Normal and the Obstructive Sleep Apnea Patients (PVDF 필름 기반 센서를 이용한 정상인 및 폐쇄성 수면 무호흡증 환자에서의 무구속적인 렘 수면 모니터링)

  • Hwang, Su Hwan;Yoon, Hee Nam;Jung, Da Woon;Seo, Sang Won;Lee, Yu Jin;Jeong, Do-Un;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.55-61
    • /
    • 2014
  • In sleep monitoring system, polysomnography (PSG) is the gold-standard but previous studies revealed that attaching numerous amount of sensors disturb sleep during the test which is the fundamental disadvantage of PSG. We suggest an unconstrained rapid-eye-movement (REM) sleep monitoring method measured with polyvinylidene (PVDF) film-based sensor for the normal and the obstructive sleep apnea (OSA) patients. Nine normal subjects and seventeen OSA patients have participated in the study. During REM sleep, rate and variability of respiration are known to be greater than in other sleep stages. Based on this phenomena, respiratory signals of participants were unconstrainedly measured using the PVDF-based sensor with the PSG and REM sleep were extracted from the average rate and variability of respiration. In epoch-by-epoch REM sleep detection, proposed method classified REM sleep with an average sensitivity of 72.3%, specificity of 92.5%, accuracy of 88.9%, and kappa statistic of 0.60 compared to the results of PSG. Student's t-test showed no significant difference between the results of normal and OSA group. This method is potentially applicable to REM sleep detection in homing environment or ambulatory monitoring.

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

A Study on the Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method (초음파 센싱 방식의 spirometer에 대한 sensitivity 향상 연구)

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.204-209
    • /
    • 2005
  • The respiration measurement method using the ultrasound sensor hardly gets an influence of an error of inertia and pressure and it is a respiratory detection device available semi-permanently. This device measures the amount and flow of respiration through using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. In this paper, it improved sensitivity of a signal to happen during transmission and receipt of a sensor because measurement must be performed with a patient to the center and measurement was played in a weak breathing so that it was possible.

Wireless RF Sensor Structure for Non-Contact Vital Sign Monitoring

  • Kim, Sang-Gyu;Yun, Gi-Ho;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes a compact and novel wireless vital sign sensor at 2.4 GHz that can detect heartbeat and respiration signals. The oscillator circuit incorporates a planar resonator, which functions as a series feedback element as well as a near-field radiator. The periodic movement of a human body during aerobic exercise could cause an input impedance variation of the radiator within near-field range. This variation results in a corresponding change in the oscillation frequency and this change has been utilized for the sensing of human vital signs. In addition, a surface acoustic wave (SAW) filter and power detector have been used to increase the system sensitivity and to transform the frequency variation into a voltage waveform. The experimental results show that the proposed sensor placed 20 mm away from a human body can detect the vital signs very accurately.