• Title/Summary/Keyword: Respiration Tracking

Search Result 20, Processing Time 0.019 seconds

Measurement of Respiratory Motion Signals for Respiratory Gating Radiation Therapy (호흡동조 방사선치료를 위한 호흡 움직임 신호 측정)

  • Chung, Jin-Beom;Chung, Won-Kyun;Kim, Yon-Lae;Lee, Jeong-Woo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Respiration motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. Accounting for such motion during treatment, therefore, has the potential to reduce margins drawn around the clinical target volume (CTV), resulting in a lower dose to normal tissues (e.g., lung and liver) and thus a lower risk of treatment induced complications. Among the techniques that explicitly account for intrafraction motion are breath-hold, respiration gating, and 4D or tumor-tracking techniques. Respiration gating methods periodically turn the beam on when the patient's respiration signal is in a certain part of the respiratory cycle (generally end-inhale or end-exhale). These techniques require acquisition of some form of respiration motion signal (infrared reflective markers, spirometry, strain gauge, thermistor, video tracking of chest outlines and fluoroscopic tracking of implanted markers are some of the techniques employed to date), which is assumed to be correlated with internal anatomy motion. In preliminary study for the respiratory gating radiation therapy, we performed to measurement of this respiration motion signal. In order to measure the respiratory motion signals of patient, respiration measurement system (RMS) was composed with three sensor (spirometer, thermistor, and belt transducer), 4 channel data acquisition system and mobile computer. For two patients, we performed to evaluation of respiratory cycle and shape with RMS. We observed under this system that respiratory cycle is generally periodic but asymmetric, with the majority of time spent. As expected, RMS traced patient's respiration each other well and be easily handled for application.

  • PDF

Respiration Rate Measurement based on Motion Compensation using Infrared Camera (열화상 카메라를 이용한 움직임 보정 기반 호흡 수 계산)

  • Kwon, Jun Hwan;Shin, Cheung Soo;Kim, Jeongmin;Oh, Kyeong Taek;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1076-1089
    • /
    • 2018
  • Respiration is the process of moving air into and out of the lung. Respiration changes the temperature in the chamber while exchanging energy. Especially the temperature of the face. Respiration monitoring using an infrared camera measures the temperature change caused by breathing. The conventional method assumes that motion is not considered and measures respiration. These assumptions can not accurately measure the respiration rate when breathing moves. In addition, the respiration rate measurement is performed by counting the number of peaks of the breathing waveform by displaying the position of the peak in a specific window, and there is a disadvantage that the breathing rate can not be measured accurately. In this paper, we use KLT tracking and block matching to calibrate limited weak movements during breathing and extract respiration waveform. In order to increase the accuracy of the respiration rate, the position of the peak used in the breath calculation is calculated by converting from a single point to a high resolution. Through this process, the respiration signal could be extracted even in weak motion, and the respiration rate could be measured robustly even in various time windows.

Analysis of Correlation Coefficient Between Movements of Thoracoabdominal Tumors and External Respiration Using Image Guided Radiotherapy(IGRT) (영상유도 방사선치료장치(IGRT)를 이용한 흉·복부 종양의 움직임과 외부호흡과의 상관관계 분석)

  • Kim, Gha-Jung;Hong, Ju-Youn;Han, Sang-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.362-370
    • /
    • 2014
  • This study measured and analyzed the correlation coefficient between movements of thoracoabdominal tumors and external respiration in a free-breathing state, using cyberknife image guided radiotherapy(IGRT). This study subjects included a total of 30 patients with lung tumors(n=10), liver tumors(n=10) and pancreatic tumor(n=10) who underwent radiotherapy, and the movements of tumors were analyzed using converted log data of the tumor motion tracking system(MTS). In a free-breathing state, In relation to Peason's correlation coefficient between external respiration and lung tumors in the entire treatment process, the correlation coefficient was 0.646(p<0.05) in the cranio-caudal direction, 0.365(p<0.088) in the left and right direction and 0.196(p<0.115) in the antero-posterior direction. The correlation coefficient of liver tumors was 0.841(p<0.000) in the cranio-caudal direction, 0.346 (p<0.179) in the left and right direction and 0.691(p<0.001) in the antero-posterior direction. The correlation coefficient of Pancreatic tumors was 0.683(p<0.000) in the cranio-caudal direction, 0.397(p<0.006) in the left and right direction and 0.268(p<0.127) in the antero-posterior direction. In conclusion, the measurement findings of thoracoabdominal tumor movement using IGRT would be helpful in determining an accurate target volume. Moreover, the analysis of correlation between external respiration and movements of internal tumors would provide important information to correct movements of tumors for diverse radiotherapy techniques.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF

Analysis of Teaching Behavior and Visual Attention according to Teacher's Career in Elementary Science Inquire-based Class on Respiration (탐구형 초등과학수업 '호흡' 차시에서 교사의 경력에 따른 교수행동 및 시각적 주의 분석)

  • Kim, Jang-Hwan;Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.206-218
    • /
    • 2018
  • The purpose of this study is to analyze the teaching behaviors and visual attention according to teacher's career in Elementary Science Inquire-based Class. Participants were four elementary school teachers in Seoul. They were all in grade 5 and taught science. According to the experience of elementary science education, two novice teachers and two expert teachers were identified. Participants taught Respiration in the 'Structure and Function of our Body' in the elementary science fifth grade. The mobile eye tracker used in this study is SMI's ETG 2w, which is a binocular tracking system. In addition, a video camera was installed behind the classroom to record the entire class. We recorded all the contents of the recorded video and analyzed the results. In this study, the actual practice time, participant's visual attention, and decentralized attention ability were analyzed by class phase. The results of the study are as follows. First, there was a difference between planned class time and actual practice time. The novice teachers were having difficulty in reconstructing the contents of education, and the expert teachers were reconstructing the curriculum and interacting with the students with high understanding and application of the curriculum. There were many differences between the novice teachers and the expert teachers in the tour guidance to confirm student activities. Second, if we look at the visual attention on the area related to teaching and learning by class phase, the novice teacher concentrates all the steps in a specific area, expert teachers showed an equal visual attention to meaningful areas of teaching and learning activities. Third, there was a statistically significant difference in activities 1-1, 1-2, 2-1, and 2-2 when the participants' decentralized attention ability. Expert teachers frequently checked students' understanding and interests. There was a lot of interaction with students. It is also shown through the decentralized attention ability that the novice teachers concentrate on a specific area, and the expert teachers have a high degree of decentralized attention ability and visual attention evenly.

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

Study of Respiration Simulating Phantom using Thermocouple-based Respiration Monitoring Mask (열전쌍마스크를 이용한 호흡모사팬톰 연구)

  • Lim, Sang-Wook;Park, Sung-Ho;Yi, Byong-Yong;Lee, Sang-Hoon;Cho, Sam-Ju;Huh, Hyun-Do;Shin, Seong-Soo;Kim, Jong-Hoon;Lee, Sang-Wook;Kwon, Soo-Il;Choi, Eun-Kyung;Ahn, Seung-Do
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.217-222
    • /
    • 2005
  • Purpose: To develop the respiration simulating phantom with thermocouple for evaluating 4D radiotherapy such as gated radiotherapy breathing control radiotherapy and dynamic tumor tracking radiotherapy. Materials and Methods: The respiration monitoring mask(ReMM) with thermocouple was developed to monitor the patient's irregular respiration. The signal from ReMM controls the simulating phantom as organ motion of patients in real-time. The organ and the phantom motion were compared with its respiratory curves to evaluate the simulating phantom. ReMM was used to measure patients' respiration, and the movement of simulating phantom was measured by using $RPM^{(R)}$. The fluoroscope was used to monitor the patient's diaphragm motion. relative to the organ motion, respectively. The standard deviation of discrepancy between the respiratory curve and the organ motion was 8.52% of motion range. Conclusion: Patients felt comfortable with ReMM. The relationship between the signal from ReMM and the organ motion shows strong correlation. The phantom simulates the organ motion in real-time according to the respiratory signal from the ReMM. It is expected that the simulating phantom with ReMM could be used to verify the 4D radiotherapy.

Development and Utility Evaluation of Portable Respiration Training Device for Image-guided Stereotactic Body Radiation Therapy (SBRT) (영상유도 체부정위방사선 치료시 호흡동조를 위한 휴대형 호흡연습장치의 개발 및 유용성 평가)

  • Hwang, Seon Bung;Park, Mun Kyu;Park, Seung Woo;Cho, Yu Ra;Lee, Dong Han;Jung, Hai Jo;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2014
  • This study developed a portable respiratory training device to improve breathing stability, which is an important element in using the CyberKnife Synchrony respiratory tracking device, one of the typical Stereotactic Radiation Therapy (SRT) devices. It produced an interface for users to be able to select one of two displays, a graph type and a bar type, supported an auditory system that helps them expect next respiration by improving a sense of rhythm of their respiratory period, and provided comfortable respiratory inducement. By targeting 5 applicants and applying individual respiratory period detected through a self-developed program, it acquired signal data of 'guide respiration' that induces breathing through signal data gained from 'free respiration' and an auditory system, and evaluated the usability by comparing deviation average values of respiratory period and respiratory amplitude. It could be identified that respiratory period decreased $55.74{\pm}0.14%$ compared to free respiration, and respiratory amplitude decreased $28.12{\pm}0.10%$ compared to free respiration, which confirmed the consistency and stability of respiratory. SBRT, developed based on these results, using the portable respiratory training device, for liver cancer or lung cancer, is evaluated to be able to help reduce delayed treatment time due to respiratory instability and improve treatment accuracy, and if it could be applied to developing respiratory training applications targeting an android-based portable device in the future, even use convenience and economic efficiency are expected.

Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System

  • Lee, Minsik;Cho, Min-Seok;Lee, Hoyeon;Chung, Hyekyun;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to install a system that compensated for the respiration motion using an articulated robotic manipulator couch which enables a wide range of motions that a Stewart platform cannot provide and to evaluate the performance of various prediction algorithms including proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory motion, and control software. We performed simulations and experiments using respiratory data of 12 patients to investigate the feasibility of the system and various prediction algorithms, namely linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-averaging algorithm showing the best results. The simulation study showed 43% average and 49% maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with the $QUASAR^{TM}$ phantom showed 51% average and 56% maximum improvement ratios with this algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-averaging prediction algorithm can be widely used in the field of radiation therapy, providing a highly efficient and utilizable technology that can enhance the therapeutic effect and improve safety through a noninvasive approach.

A Parametric Image Enhancement Technique for Contrast-Enhanced Ultrasonography (조영증강 의료 초음파 진단에서 파라미터 영상의 개선 기법)

  • Kim, Ho Joon;Gwak, Seong Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.231-236
    • /
    • 2014
  • The transit time of contrast agents and the parameters of time-intensity curves in ultrasonography are important factors to diagnose various diseases of a digestive organ. We have implemented an automatic parametric imaging method to overcome the difficulty of the diagnosis by naked eyes. However, the micro-bubble noise and the respiratory motions may degrade the reliability of the parameter images. In this paper, we introduce an optimization technique based on MRF(Markov Random Field) model to enhance the quality of the parameter images, and present an image tracking algorithm to compensate the image distortion by respiratory motions. A method to extract the respiration periods from the ultrasound image sequence has been developed. We have implemented the ROI(Region of Interest) tracking algorithm using the dynamic weights and a momentum factor based on these periods. An energy function is defined for the Gibbs sampler of the image enhancement method. Through the experiments using the data to diagnose liver lesions, we have shown that the proposed method improves the quality of the parametric images.