• Title/Summary/Keyword: Respiration Chambers

Search Result 30, Processing Time 0.02 seconds

Applicability of the Multi-Channel Surface-soil CO2-concentration Monitoring (SCM) System as a Surface Soil CO2 Monitoring Tool (다채널 지표토양 CO2 농도 모니터링(SCM) 시스템 개발 및 적용성 평가 연구)

  • Sung, Ki-Sung;Yu, Soonyoung;Choi, Byoung-Young;Park, Jinyoung;Han, Raehee;Kim, Jeong-Chan;Park, Kwon Gyu;Chae, Gitak
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • Monitoring of $CO_2$ release through the ground surface is essential to confirm the safety of carbon storage projects. We conducted a feasibility study of the multi-channel surface-soil $CO_2$-concentration monitoring (SCM) system as a soil $CO_2$ monitoring tool with a small scale injection test. The background concentrations showed the distinct diurnal variation. The negative relation of $CO_2$ with temperature and the low $CO_2$ concentrations during the day imply that surface-soil $CO_2$ depends on photosynthesis and respiration. After 4.2 kg of $CO_2$ injection (1 m depth for 29 minutes), surface-soil $CO_2$ concentrations increased in the all five chambers, which were located less than 2.8 m of distance from each other. The $CO_2$ concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data from Chamber 2 and 5 with low increase rates were used for statistical analyses. Coefficient of variation for 30 minutes ($CV_{30min}$.) is efficient to determine a leakage signal, with reflecting the fast change in $CO_2$ concentrations. Consequently, SCM and $CV_{30min}$ could be applied for an efficient monitoring tool to detect $CO_2$ release through the ground surface. Also, this study provides ideas for establishing action steps after leakage detection.

Effects on Growth, Photosynthesis and Pigment Contents of Liriodendron tulipifera under Elevated Temperature and Drought (온도 증가와 건조 스트레스가 백합나무의 생장, 광합성 및 광색소 함량에 미치는 영향)

  • Kim, Gil Nam;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This study was conducted to investigate the effects of high temperature and drought on growth performance, photosynthetic parameters and photosynthetic pigment contents of Liriodendron tulipifera L. seedlings. The seedlings were grown in controlled-environment growth chambers with combinations of four temperature ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$, $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water status (control, drought). Temperature rise increased growth, total dry weight and leaf area in all water status. Also photosynthetic rate, dark respiration, stomatal conductance and transpiration rate increased with increasing temperature. In contrast, growth and photosynthetic parameters of L. tulipifera seedlings were lower in $-3^{\circ}C$ than $0^{\circ}C$. But temperature rise decreased water use efficiency in all water status. Temperature rise increased photosynthetic pigment contents of leaf. Also chlorophyll a/b ratio increased with increasing temperature. In conclusion, the elevated temperature lead to causes growth increase through the increase of energy production by higher photosynthetic rate during a growth period of L. tulipifera seedlings.

Effects of feeding level on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

  • Na, Youngjun;Li, Dong Hua;Choi, Yongjun;Kim, Kyoung Hoon;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1238-1243
    • /
    • 2018
  • Objective: Two experiments were conducted to determine the effects of feeding level on nutrient digestibility and enteric methane ($CH_4$) emissions in growing goats and Sika deer. Methods: Three growing male goats (initial body weight [BW] of $22.4{\pm}0.9kg$) and three growing male deer (initial BW of $20.2{\pm}4.8kg$) were each allotted to a respiration-metabolism chamber for an adaptation period of 7 d and a data collection period of 3 d. An experimental diet was offered to each animal at one of three feeding levels (1.5%, 2.0%, and 2.5% of BW) in a $3{\times}3$ Latin square design. The chambers were used for measuring enteric $CH_4$ emission. Results: Nutrient digestibility decreased linearly in goats as feeding level increased, whereas Sika deer digestibility was not affected by feeding level. The enteric production of $CH_4$ expressed as g/kg dry matter intake (DMI), g/kg organic matter intake, and % of gross energy intake decreased linearly with increased feeding level in goats; however, that of Sika deer was not affected by feeding level. Six equations were estimated for predicting the enteric $CH_4$ emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: $CH_4(g/d)=6.2({\pm}14.1)+10.2({\pm}7.01){\times}DMI(kg/d)+0.0048({\pm}0.0275){\times}dry$ matter digestibility (DMD, g/kg)-0.0070 (${\pm}0.0187$)${\times}$neutral detergent fiber digestibility (NDFD; g/kg). For Sika deer, equation 4 was found to be of the highest accuracy: $CH_4(g/d)=-13.0({\pm}30.8)+29.4({\pm}3.93){\times}DMI(kg/d)+0.046(0.094){\times}DMD(g/kg)-0.0363({\pm}0.0636){\times}NDFD(g/kg)$. Conclusion: Increasing the feeding level increased $CH_4$ production in both goats and Sika deer, and predictive models of enteric $CH_4$ production by goats and Sika deer were estimated.

Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

  • Na, Youngjun;Li, Dong Hua;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.967-972
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the effects of forage-to-concentrate (F:C) ratio on the nutrient digestibility and enteric methane ($CH_4$) emission in growing goats and Sika deer. Methods: Three male growing goats (body weight $[BW]=19.0{\pm}0.7kg$) and three male growing deer ($BW=19.3{\pm}1.2kg$) were respectively allotted to a $3{\times}3$ Latin square design with an adaptation period of 7 d and a data collection period of 3 d. Respiration-metabolism chambers were used for measuring the enteric $CH_4$ emission. Treatments of low (25:75), moderate (50:50), and high (73:27) F:C ratios were given to both goats and Sika deer. Results: Dry matter (DM) and organic matter (OM) digestibility decreased linearly with increasing F:C ratio in both goats and Sika deer. In both goats and Sika deer, the $CH_4$ emissions expressed as g/d, g/kg $BW^{0.75}$, % of gross energy intake, g/kg DM intake (DMI), and g/kg OM intake (OMI) decreased linearly as the F:C ratio increased, however, the $CH_4$ emissions expressed as g/kg digested DMI and OMI were not affected by the F:C ratio. Eight equations were derived for predicting the enteric $CH_4$ emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: $CH_4(g/d)=3.36+4.71{\times}DMI(kg/d)-0.0036{\times}neutral$ detergent fiber concentrate (NDFC,g/kg)+$0.01563{\times}dry$ matter digestibility (DMD,g/kg)-$0.0108{\times}neutral$ detergent fiber digestibility (NDFD, g/kg). For Sika deer, equation 5 was found to be of the highest accuracy: $CH_4(g/d)=66.3+27.7{\times}DMI(kg/d)-5.91{\times}NDFC(g/kg)-7.11{\times}DMD(g/kg)+0.0809{\times}NDFD(g/kg)$. Conclusion: Digested nutrient intake could be considered when determining the $CH_4$ generation factor in goats and Sika deer. Finally, the enteric $CH_4$ prediction model for goats and Sika deer were estimated.

Metabolizable energy requirement for maintenance estimated by regression analysis of body weight gain or metabolizable energy intake in growing pigs

  • Liu, Hu;Chen, Yifan;Li, Zhongchao;Li, Yakui;Lai, Changhua;Piao, Xiangshu;van Milgen, Jaap;Wang, Fenglai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1397-1406
    • /
    • 2019
  • Objective: Feed energy required for pigs is first prioritized to meet maintenance costs. Additional energy intake in excess of the energy requirement for maintenance is retained as protein and fat in the body, leading to weight gain. The objective of this study was to estimate the metabolizable energy requirements for maintenance ($ME_m$) by regressing body weight (BW) gain against metabolizable energy intake (MEI) in growing pigs. Methods: Thirty-six growing pigs ($26.3{\pm}1.7kg$) were allotted to 1 of 6 treatments with 6 replicates per treatment in a randomized complete block design. Treatments were 6 feeding levels which were calculated as 50%, 60%, 70%, 80%, 90%, or 100% of the estimated ad libitum MEI ($2,400kJ/kg\;BW^{0.60}\;d$). All pigs were individually housed in metabolism crates for 30 d and weighed every 5 d. Moreover, each pig from each treatment was placed in the open-circuit respiration chambers to measure heat production (HP) and energy retained as protein ($RE_p$) and fat ($RE_f$) every 5 d. Serum biochemical parameters of pigs were analyzed at the end of the experiment. Results: The average daily gain (ADG) and HP as well as the $RE_p$ and $RE_f$ linearly increased with increasing feed intake (p<0.010). ${\beta}$-hydroxybutyrate concentration of serum tended to increase with increasing feed intake (p = 0.080). The regression equations of MEI on ADG were MEI, $kJ/kg\;BW^{0.60}\;d=1.88{\times}ADG$, g/d+782 ($R^2=0.86$) and $ME_m$ was estimated at $782kJ/kg\;BW^{0.60}\;d$. Protein retention of growing pigs would be positive while REf would be negative at this feeding level via regression equations of $RE_p$ and $RE_f$ on MEI. Conclusion: The $ME_m$ was estimated at $782kJ/kg\;BW^{0.60}\;d$ in current experiment. Furthermore, growing pigs will deposit protein and oxidize fat if provided feed at the estimated maintenance level.

Development of Korean SPAR(Soil-Plant-Atmosphere-Research) System for Impact Assessment of Climate Changes and Environmental Stress (기후변화 및 환경스트레스 영향평가를 위한 한국형 SPAR(Soil-Plant-Atmosphere-Research) 시스템의 개발)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • The needs for precise diagnostics and farm management-decision aids have increased to reduce the risk of climate change and environmental stress. Crop simulation models have been widely used to search optimal solutions for effective cultural practices. However, limited knowledge on physiological responses to environmental variation would make it challenging to apply crop simulation models to a wide range of studies. Advanced research facilities would help investigation of plant response to the environment. In the present study, the sunlit controlled environment chambers, known as Korean SPAR (Soil-Plant-Atmosphere-Research) system, was developed by renovating existing SPAR system. The Korean SPAR system controls and monitors major environmental variables including atmospheric carbon dioxide concentration, temperature and soil moisture. Furthermore, plants are allowed to grow under natural sunlight. Key physiological and physical data such as canopy photosynthesis and respiration, canopy water and nutrient use over the whole growth period are also collected automatically. As a case study, it was shown that the Korean SPAR system would be useful for collection of data needed for understanding the growth and developmental processes of a crop, e.g., soybean. In addition, we have demonstrated that the canopy photosynthetic data of the Korean SPAR indicate the precise representation of physiological responses to environment variation. As a result, physical and physiological data obtained from the Korean SPAR are expected to be useful for development of an advanced crop simulation model minimizing errors and confounding factors that usually occur in field experiments.

Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs

  • Li, Zhongchao;Lyu, Zhiqian;Liu, Hu;Liu, Dewen;Jaworski, Neil;Li, Yakui;Lai, Changhua
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • Objective: The objective of this study was to determine net energy (NE) of expeller-press (EP-RSM) and solvent-extracted rapeseed meal (SE-RSM) and to establish equations for predicting the NE in rapeseed meal (RSM) fed to growing pigs. Methods: Thirty-six barrows (initial body weight [BW], 41.1±2.2 kg) were allotted into 6 diets comprising a corn-soybean meal basal diet and 5 diets containing 19.50% RSM added at the expense of corn and soybean meal. The experiment had 6 periods and 6 replicate pigs per diet. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to diets. On day 8, pigs were transferred to respiration chambers and fed their respective diet at 2,000 kJ metabolizable energy (ME)/kg BW0.6/d. Feces and urine were collected, and daily heat production was measured from day 9 to 13. On days 14 and 15, the pigs were fed at 890 kJ ME/kg BW0.6/d and fasted on day 16 for evaluation of fasting heat production (FHP). Results: The FHP of pigs averaged 790 kJ/kg BW0.6/d and was not affected by the diet composition. The NE values were 10.80 and 8.45 MJ/kg DM for EP-RSM and SE-RSM, respectively. The NE value was positively correlated with gross energy (GE), digestible energy (DE), ME, and ether extract (EE). The best fit equation for NE of RSM was NE (MJ/kg DM) = 1.14×DE (MJ/kg DM)+0.46×crude protein (% of DM)-25.24 (n = 8, R2 = 0.96, p<0.01). The equation NE (MJ/kg DM) = 0.22×EE (% of DM)-0.79×ash (% of DM)+14.36 (n = 8, R2 = 0.77, p = 0.018) may be utilized to quickly determine the NE in RSM when DE or ME values are unavailable. Conclusion: The NE values of EP-RSM and SE-RSM were 10.80 and 8.45 MJ/kg DM. The NE value of RSM can be well predicted based on energy content (GE, DE, and ME) and proximate analysis.

Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows

  • Kobayashi, Nobuyuki;Hou, Fujiang;Tsunekawa, Atsushi;Yan, Tianhai;Tegegne, Firew;Tassew, Asaminew;Mekuriaw, Yeshambel;Mekuriaw, Shigdaf;Hunegnaw, Beyadglign;Mekonnen, Wondimeneh;Ichinohe, Toshiyoshi
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1415-1424
    • /
    • 2021
  • Objective: Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. We validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. Methods: First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. From the results of the validation, we constructed an estimation equation to determine CH4 emissions from LMD CH4 concentrations. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h/d (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. Results: The exhaled CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). The estimation equation used to determine CH4 emissions (y, mg/min) from LMD CH4 concentrations (x, ppm m) was y = 0.4259x+38.61. Daily CH4 emissions of Fogera cows estimated by using the equation did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napier-grass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. Conclusion: These findings demonstrate the potential of using LMDs to valuate feeding regimens rapidly and economically for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration.

Imaging Diagnosis of Dilated Cardiomyopathy in a Maltese Dog

  • An, Soyon;Park, Junghyun;Mok, Jinsu;Kim, Areum;Han, Changhee;Song, Joong Hyun;Yu, Dohyeon;Hwang, Tae Sung;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.38 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • A 6-year-old, spayed female, Maltese dog with tachypnea and dry cough was presented to Gyeongsang National University Veterinary Medical Teaching hospital. On physical examination, its respiration rate was 132 per minute. Decreased partial pressure of oxygen, partial pressure of carbon dioxide, and hyperlactatemia were found on arterial blood gas analysis. Its diastolic blood pressure was 80 mmHg. Auscultation revealed arrhythmia. Electrocardiogram revealed P pulmonale, P mitrale, and ventricular premature complexes. Thoracic radiographs revealed mild enlargement of both atrium and moderate enlargement of the left ventricular. There was also a moderate alveolar pattern in the right and caudal part of the left cranial lung lobe. Two-dimensional echocardiography showed enlargement of generalized four chambers without remarkable findings of valvular degeneration. M-mode echocardiography showed decreased left ventricular fractional shortening and enlarged left ventricular internal diameter at both end-systolic and end-diastolic. Color-flow Doppler imaging revealed eccentric turbulent flow starting below the left ventricular outflow tract and extending into the left atrium during systole. Spectral Doppler recordings revealed a high velocity flow through the mitral, tricuspid, aorta, and pulmonic regurgitation. Restrictive transmitral flow revealed high E-wave velocity, short E-wave deceleration time, and reduced A-wave velocity. There was also low ejection velocity thorough left ventricular out tract flow. Based on echocardiographic examination, dilated cardiomyopathy was the tentative diagnosis. The dog was medicated with inotropes, angiotensin converting enzyme inhibitor, and diuretics. At the 10-day following-up, the dog died suddenly. This report describes echocardiographic diagnosis and prognosis of dilated cardiomyopathy rarely reported in small breed dogs.

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.