Browse > Article
http://dx.doi.org/10.5532/KJAFM.2015.17.1.75

Effects on Growth, Photosynthesis and Pigment Contents of Liriodendron tulipifera under Elevated Temperature and Drought  

Kim, Gil Nam (Department of Forest Genetic Resources, Korea Forest Research Institute)
Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.17, no.1, 2015 , pp. 75-84 More about this Journal
Abstract
This study was conducted to investigate the effects of high temperature and drought on growth performance, photosynthetic parameters and photosynthetic pigment contents of Liriodendron tulipifera L. seedlings. The seedlings were grown in controlled-environment growth chambers with combinations of four temperature ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$, $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water status (control, drought). Temperature rise increased growth, total dry weight and leaf area in all water status. Also photosynthetic rate, dark respiration, stomatal conductance and transpiration rate increased with increasing temperature. In contrast, growth and photosynthetic parameters of L. tulipifera seedlings were lower in $-3^{\circ}C$ than $0^{\circ}C$. But temperature rise decreased water use efficiency in all water status. Temperature rise increased photosynthetic pigment contents of leaf. Also chlorophyll a/b ratio increased with increasing temperature. In conclusion, the elevated temperature lead to causes growth increase through the increase of energy production by higher photosynthetic rate during a growth period of L. tulipifera seedlings.
Keywords
Liriodendron tulipifera; Growth; Photosynthetic rate; Stomatal conductance; Transpiration rate; Photosynthetic pigment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim, Y. W., and H. K. Moon, 2013: Comparison of physiological characteristics, stomata and DNA content between seedling and 5-year-old somatic plant (somatic embryo derived-plant) in Liriodendron tulipifera. Journal of Korean Forestry Society 102, 537-542.   DOI
2 Kilpelainen, A., H. Peltola, A. Ryyppo, K. Sauvala, K. Laitinen, and S. Kellomaki, 2003: Wood properties of scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 23, 889-897.   DOI   ScienceOn
3 Kirschbaum, M. U. F., 2004: Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biology 6, 242-253.   DOI
4 Koch, G. W., S. C. Sillet, G. M. Jennings, and S. D. Davis, 2004: The limits to tree height. Nature 428, 851-854.   DOI   ScienceOn
5 Korea Forest Research Institute., 2008: Yellow Poplar (Liriodendron tulipifera L.) - Growth characteristics and utilization technique. Research Republic Korea Forest research Institute. 320pp.
6 Kratsch, H. A., and R. R. Wise, 2000: The ultrastructure of chilling stress. Plant, Cell and Environment 23, 337-350.   DOI   ScienceOn
7 Larcher, W., 1995: Physiological Plant Physiology. Springer, New York, 97-105.
8 Lawson, T., K. Oxborough, J. I. L. Morison, and N. R. Baker, 2003: The responses of guard and mesophyll cell photosynthesis to $CO_2$, $O_2$, light, and water stress in a range of species are similar. Journal of Experimental Botany 54, 1743-1752.   DOI
9 Lee, H. S., S. J. Lee, J. C. Lee, K. W. Kim, and P. G. Kim, 2013: Effects of elevated CO2 concentration and temperature on physiological characters of Liriodendron tulipifera. Korean Journal of Agricultural and Forest Meteorology 15, 145-152.   DOI   ScienceOn
10 Lim, C. S., 2010: Selection of cultivars and organic solvents to improve fruit set of greenhouse watermelon during cold period. Journal of Bio-Environment Control 19, 147-152.
11 Reyes, E., and P. H. Jennings, 1994: Response of cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L. var. melopepo) roots to chilling stress during early stages of seedling development. Journal of the American Society for Horticultural Science 119, 964-970.
12 Richard, J. N., M. L. Tammy, S. H. R. Jennifer, and G. O. N. Elizabeth, 2000: Nitrogen resorption in senescing tree leaves in a warmer; $CO_2$-enriched atmosphere. Plant and Soil 224, 15-29.   DOI
13 Ro, H. M., P. G. Kim, and I. B. Lee, 2001: Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. Cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15, 195-203.   DOI
14 Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch, 2001: A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562.   DOI
15 Ryu, K. O., S. S. Jang, W. Y. Choi, and H. E. Kim, 2003: Growth performance and adaptation of Liriodendron tulipifera in Korea. Journal of Korean Forestry Society 92, 515-525.
16 Ryu, K. O., M. S. Han, E. R. Noh, and I. S. Kim, 2014: Age-age correlation on volume growth of Yellow Poplar (Liriodendron tulipifera L.). Journal of Agriculture & Life Science 48, 13-23
17 Shao, H. B., L. Y. Chu, M. A. Shao, A. J. Cheruth, and H. M. Mi, 2008: Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies 331, 433-441.   DOI   ScienceOn
18 Verhoeven, A. S., D. A. Barbara, and W. A. William, 1997: Enhanced employement of the xanthophylls cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology 113, 817-824.   DOI
19 Tatjana, T., B. S. Jurate, U. Akvile, V. Ilona, S. Giedre, D. Pavelas, and S. Algirdas, 2007: Effects of nitrogen fertilizers on whear photosynthetic pigment and carbohydrate contents. Biologija 53, 80-84.
20 Toth, V. R., I. Meszaros, S. Veres, and J. Nagy, 2002: Effects of the available nitrogen on the photosynthetic activity and xanthophylls cycle pool of maize in field. Journal of Plant Physiology 159, 627-634.   DOI
21 Volder, A., E. J. Edwards, J. R. Evans, B. C. Robertson, M. Schortemeyer, and R. M. Gifford, 2004: Does greater night-time, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric $CO_2$? New Phytologist 162, 397-411.   DOI
22 Way, D. A., and R. Oren, 2010: Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30, 669-688.   DOI
23 Wu, Z., P. Dijkstra, G. W. Koch, J. Penuelas, and B. A. Hungate, 2011: Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17, 927-942.   DOI
24 Yin, H. J., Q. Liu, and T. Lai, 2008: Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23, 459-469.   DOI
25 Zhao, C. and Q. Liu, 2009: Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39, 1-11.   DOI   ScienceOn
26 Beck, D. E., 1990: In silvics of North America volume 2, hardwoods. P. 406-416. Russell M. B. and Barbara H. H.(eds.) USDA, Agriculture Handbook No. 654. Washington, D.C.
27 Climate Change Information Center. 2014: RCP 8.5 scenario. http://www.climate.go.kr:8005/index.html
28 Arend, M., T. Kuster, M. S. Gunthardt-Goerg, M. Dobbertin, and M. Abrams, 2011: Provenance specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31, 287-297.   DOI
29 Barber, V. A., G. P. Juday, and B. P. Finney, 2000: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668-673.   DOI
30 Beadle, C. L., 1993: Growth analysis. In D.O. Hall, J. M. O. Scurlock. H.R. Bolhar-Nordenkampf, R.C. Leegood and S.P. Long(eds.). Photosynthesis and production in a changing environment a field and laboratory manual. Chapman Hall, London, pp. 36-46.
31 Chaves, M. M., and M. M. Oliveira, 2004: Mechanisms underlying plant resilience to water deficits: prospects of water-saving agriculture. Journal of Experimental Botany 55, 2365-2384.   DOI   ScienceOn
32 Cornic, G., 2000: Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science 5, 1360-1385.
33 Danby, R., and D. Hik, 2007: Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13, 437-451.   DOI
34 Hamid, N., F. Jawaid, and D. Amin, 2009: Effect of shortterm exposure to two different carbon dioxide concentrations on growth and some biochemical parameters of edible beans (Vigna radiate and Vigna unguiculata). Pakistan Journal of Botany 41, 1931-1836.
35 Duncan, D. R., and J. M. Widholm, 1987: Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiology 83, 703-708.   DOI
36 Ericsson, T., L. Rytter, and E. Vapaavuori, 1996: Physiology of carbon allocation in trees. Biomass and Bioenergy 11, 115-127.   DOI
37 Gimenez, C., V. J. Mitchell, and D. W. Lawlor, 1992: Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology 98, 516-524.   DOI
38 Han, C., Q. Liu, and Y. Y, 2009: Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Pices asperata seedlings. Plant Growth Regulation 58, 153-162.   DOI
39 Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1322-1334.
40 Iglesias, D. J., A. Calatayud, E. barreno, E. P. Millo, and M. Talon, 2006: Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanism and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131.   DOI
41 Kim, H. Y., J. W. Lee, T. W. Jeffries, and I. G. Choi, 2011: Evaluation of oxalic acid pretreatment condition using response surface method for producing bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by simultaneous saccharification and fermentation. Mokchae Konghak 39(1), 75-85.