• Title/Summary/Keyword: Resource interference

Search Result 338, Processing Time 0.027 seconds

Resource Allocation Based on Interference Awareness for Device-to-Device Communication in Cellular Networks (셀룰러 네트워크에서 간섭 인지 기반의 단말간 직접 통신 자원할당 방법)

  • Yang, Mochan;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.557-559
    • /
    • 2014
  • We propose an efficient resource allocation scheme based on interference awareness for D2D (Device-to-Device) communication in cellular networks. Recently, many researchers have studied how to allocate frequency resources to DUE (D2D User Equipment) with full interference channel information. However, it is difficult to assume a scenario where instantaneous interference information between the CUE (Cellular UE) and DUE is known to the BS (Base Station). To tackle this problem, we proposed in this paper a new scheme in which the BS allocates a resource to CUE and DUE without a full channel information and can aware interference based on only transmit power and distance between UEs. Simulation results show effectiveness of the proposed scheme.

Cooperative Priority-based Resource Allocation Scheduling Scheme for D2D Communications Underlaying 5G Cellular Networks (5G 셀룰러 네트워크 하의 D2D통신을 위한 협력적 우선순위 기반의 자원할당 스케줄링)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.225-232
    • /
    • 2020
  • The underlaying communication scheme in 5G cellular network is a very promising resource sharing scheme, and it is an effective scheme for improving service performance of 5G and reducing communication load between a cellular link and a device to device (D2D) link. This paper proposes the algorithm to minimize the resource interference that occurs when performing 5G-based multi-class service on gNB(gNodeB) and the cooperative priority-based resource allocation scheduling scheme (CPRAS) to maximize 5G communication service according to the analyzed control conditions of interference. The proposed CPRAS optimizes communication resources for each device, and it optimizes resource allocation according to the service request required for 5G communication and the current state of the network. In addition, the proposed scheme provides a function to guarantee giga-class service by minimizing resource interference between a cellular link and a D2D link in gNB. The simulation results show that the proposed scheme is better system performance than the Pure cellular and Force cellular schemes. In particular, the higher the priority and the higher the cooperative relationship between UE(User Equipment), the proposed scheme shows the more effective control of the resource interference.

Semi-distributed dynamic inter-cell interference coordination scheme for interference avoidance in heterogeneous networks

  • Padmaloshani, Palanisamy;Nirmala, Sivaraj
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Inter-cell interference (ICI) is a major problem in heterogeneous networks, such as two-tier femtocell (FC) networks, because it leads to poor cell-edge throughput and system capacity. Dynamic ICI coordination (ICIC) schemes, which do not require prior frequency planning, must be employed for interference avoidance in such networks. In contrast to existing dynamic ICIC schemes that focus on homogeneous network scenarios, we propose a novel semi-distributed dynamic ICIC scheme to mitigate interference in heterogeneous network scenarios. With the goal of maximizing the utility of individual users, two separate algorithms, namely the FC base station (FBS)-level algorithm and FC management system (FMS)-level algorithm, are employed to restrict resource usage by dominant interference-creating cells. The distributed functionality of the FBS-level algorithm and low computational complexity of the FMS-level algorithm are the main advantages of the proposed scheme. Simulation results demonstrate improvement in cell-edge performance with no impact on system capacity or user fairness, which confirms the effectiveness of the proposed scheme compared to static and semi-static ICIC schemes.

Shared Relay-Based Interference Management Schemes for Device-to-Device Radio Underlaying Cellular Networks (셀룰러 네트워크상의 D2D 통신을 위한 공유릴레이 기반 간섭 관리 기법)

  • Yang, Mochan;Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.371-380
    • /
    • 2013
  • D2D (Device-to-Device) communication on an underlying cellular infrastructure which exploits the same spectrum has several advantages such as increased resource utilization and improved cellular coverage. However, D2D communication system needs to cope with ICI (Inter-Cell Interference) and interference between cellular and D2D links. As a result, macro UEs (User Equipments), especially those located near cell edge, will suffer from serious link performance degradation. We propose a novel interference avoidance mechanism assisted by SRN (Shared Relay Node) in this paper. SRN not only performs data re-transmission as a usual Type II relay but also has several features newly defined to avoid interference between cellular and D2D links. In particular, we suggest resource allocation methods based on the SRN for effective interference avoidance, and evaluate their performance through computer simulations.

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

A Study on Optimization Problem based on RFID Reader-to-reader Interference Model and Genetic-resource Allocation Technique (RFID 리더간 간섭 모델에 기반 한 최적화 문제와 유전적 자원할당 기법에 관한 연구)

  • Seo, Hyun-Sik;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.51-60
    • /
    • 2009
  • In radio frequency identification(RFID) systems, when an RFID reader uses the same or adjacent frequency with neighbor readers, the interference between the readers may occur, which causes the reader collision and errors in tag recognition. In the previous study on RFID reader anti-collision, the techniques based on Frequency Division Mutiplex(FDM) or Time Division Multiplex(TDM) are proposed. However in these paper, the problem on the condition of RFID reader-to-reader interference considering the distance between interfering readers, frequency and operating time is not define exactly. In this paper, the interference effect is analyzed through RFID reader interference model considering the TDM and FDM, and the optimization problem is defined. To solve this, genetic-resource allocation technique is proposed. Therefore the optimal resource allocation applied RFID environment faithfully is accomplished.

An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks (위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식)

  • Park, Unhee;Kim, Hee Wook;Oh, Dae-Sub;Jang, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.298-306
    • /
    • 2015
  • In this paper, we propose an efficient resource allocation scheme for the integrated satellite/terrestrial networks. The proposed scheme is a frequency sharing technique to mitigate the inter-component interferences which can be generated between a satellite beam and terrestrial cells that are operated in the same frequency. The proposed dynamic resource allocation scheme can mitigate the total inter-component interference by optimizing the total transmission power and it can expect a result of which can lead to an increase in capacity. In such a system, the interference situation can be affected by the distributed traffic demands or up/down link communications environments. In this point of view, we evaluate the performance of the total consumed power, the amount of inter-component interference with respect to different traffic distributions and interference environments between the satellite beam and terrestrial systems.

Resource Allocation Scheme Based on Spectrum Sensing for Device-to-Device Communications Underlaying Cellular Networks (셀룰러 네트워크 환경에서 D2D 통신을 위한 스펙트럼 센싱 기반 자원 할당 기법)

  • Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.898-907
    • /
    • 2013
  • For D2D communications underlaying cellular networks, it is essential to consider the mutual interference between the existing cellular communications and D2D communications as well as the spectral efficiency, as they need to share the same frequency. Accordingly, a resource allocation scheme should be designed in such a way that minimizes the mutual interference and maximizes the spectrum utilization efficiency at the same time. In this paper, we propose a resource allocation scheme based on cooperation of the base station and D2D terminals. Specifically, a D2D terminal senses the cellular spectrum to recognize the interference condition, chooses the best cellular resource, and reports the information to the base station. The base station allocates D2D resource such that the corresponding D2D link and cellular link share the same resource. The performance of the proposed resource allocation scheme is ated through compu under 3GPP LTE-Advanced scenarios.

Self-Organized Resource Allocation for Femtocell Network to Mitigate Downlink Interference

  • Sable, Smita;Bae, Jinsoo;Lee, Kyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2410-2418
    • /
    • 2015
  • In this paper, we consider the femto users and their mutual interference as graph elements, nodes and weighted edges, respectively. The total bandwidth is divided into a number of resource blocks (RBs) and these are assigned to the femto user equipment (FUEs) using a graph coloring algorithm. In addition, resources blocks are assigned to the femto users to avoid inter-cell interference. The proposed scheme is compared with the traditional scheduling schemes in terms of throughput and fairness and performance improvement is achieved by exploiting the graph coloring scheme.

Analysis of Interference Impacts by UWB System to WiBro Systems

  • Yoon Young-Keun;Jin Rong-Reon;Kim Kyung-Seok;Choi Ik-Guen
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.197-203
    • /
    • 2005
  • This paper evaluates the impacts for interference from UWB system, and determines the tolerable UWB power spectral density(PSD) to the new deploying system, which is called a portable internet service in Korea. It also proposes the interference analysis scheme that can evaluate the characteristics of the performance degradation for portable internet service according to the emission power of UWB systems at the specified frequency bands. The proposed scheme includes a multi-rate and data service environments to deal with interference to portable internet service. It is obtained from simulation results that the transmission PSD of UWB systems should be rigidly restricted by less approximately 10 ${\~}$ 20 dB than FCC provisional limit for coexistence between UWB and portable internet service already allocated at 2.3 GHz frequency bands in Korea.