• Title/Summary/Keyword: Resource Recycling System

Search Result 128, Processing Time 0.022 seconds

The Investigation on Application of Construction Waste Unit to Establish Resource Recycling System through Case Study (건설폐기물 자원순환체계 구축을 위한 발생원단위 적용에 관한 연구)

  • Son, Byeung Hun;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.181-186
    • /
    • 2010
  • Research on construction waste unit was in progress in the 1995 when 'Proper Disposal and Recycling Measures for Construction Waste' was made by the Seoul Development Institute. Such an effort has been made in order to cope with the lack of natural resources in Korea and to utilize the reusable resources. Furthermore, these efforts have also increased due to the improved standing of Korea in the international community. A large number of residential buildings were built in the response to the government's policy by increasing the supply of houses between the 1970's and 1980's. In 2000, more reconstruction and redevelopment was done because of the aged buildings and change of use for those buildings. And the project has been actively promoted until now, which caused a sharp increase in the generation volume of construction waste. In Korea, 8 kinds of construction waste unit, including the standard construction manpower and materials estimation, are introduced. Currently, they provide standards to different building categories and waste properties while for construction sites different standards are applied. This study aims to measure the actual amount of construction waste after sample buildings are dismantled and analyzes the estimation of the waste quantity by using various standard units. Through comparison, this study will figure out the differences among the standard units in order to find out how to apply the standard units properly. Moreover, this research will provide practical measures to apply such units to construction sites.

Cooperative Spectrum Sensing Based on Fuzzy control (Fuzzy 제어 기반 협력 스펙트럼 센싱)

  • Lee, Mi Sun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.6-9
    • /
    • 2013
  • Cognitive Radio is an intelligent interference avoidance idle spectrum communication system for your environment and actively determine the frequency bandwidth recycling by sharing the spectrum in a way that maximizes the efficiency of radio resource technology. At this time, this does not cause interference to the PU spectrum sensing technology is important. If you can choose, depending on the state of the channel spectrum sensing algorithm will be more efficient sensing. Matched filter detection system model that reflects the individual sensing through a fuzzy controller in this paper, energy detection and self-correlation detection are proposed and analyzed.

Current Status and Utilization Technology of End-of-Life Photovoltaic Modules (태양광 폐 모듈의 처리현황 및 실용화 기술)

  • Cho, Jai Young;Park, Areum;Yun, Hyun Mok;Jun, Yun-Su;Kim, Joon Soo
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2020
  • Recently, it is increasing a amount of installed solar-cell rapidly, and end-of-life photovoltaic(ELP) modules are generated in according to the reduction of cell efficiency largely. Recycling of ELP modules are begun at an advanced nation already, but there are bring about environmental contamination and resource recovery problems owing to not treated ELP modules because of economic cost completely. First of all, there were researched basic study for treatment conditions of used solar cell inspection, dismantling of aluminum frame, crushing / grinding & separation of tempered glass, removal of back sheet & EVA film, leaching & precipitation recovery of valuable metals and treatment of waste water. Therefore, we establish optimum conditions through carried out of designed apparatus, installation of equipment, test operation & trouble shooting in scale of 1ton/day pilot plant test. Following to economic review, it does have the economic efficiency until to the case of tempered glass recovery, but does not have the economic value in case of total processes until to recover the valuable metals. However, there are guaranteed economic value if we are gained a large amount of the expenses through EPR supported system. It was confirmed the commercialized possibility of ELP modules recycling if there were established on the collecting ELP modules, reusing criteria, economical technology, enactment of directives and enforcement of EPR supported system efficiently.

Evaluation of Resource Recovery from Sorted Waste by MBT System (MBT시스템에 의해 선별(選別)된 생활폐기물(生活廢棄物)의 자원화(資源化) 평가(評價)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Han, Sang-Kuk;Lee, Nam-Hoon;Kang, Jeong-Hee;Wie, June
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2013
  • This study was carried out to evaluate the possibility of resource recovery for municipal solid waste(MSW) that sorted by a MBT system. First, physical property of MSW was similar to wastes carried into Sudokown landfill site. However, moisture of MSW was little higher than that. As a result of BMP test using organic fraction of MSW(OFMSWs), approximately 60 ~ 80 mL $CH_4/g$-VS of methane was occurred. Compared to the other studies, the value of methane is lower. It seems to be caused that high ratio of vinyl/plastic in OFMSWs. The other BMP test using sample of MBT system located in Sudokwon landfill was conducted each physical properties. According to the result of experiment, food waste makes 193 mL $CH_4/g$-VS, and paper is 102 mL $CH_4/g$-VS. However, there was not methane production in vinyl and rubber. Additionally, others that can't sort no more show 30 m $CH_4L/g$-VS of methane production. From the result of experimental data OFMSWs has high fraction of vinyl, rubber and other substance that difficult for biodegradation. Therefore it is need to sort of them.

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.

A Study on Contents Manufactur ing System for Massive Contents Production

  • Ji, Su-Mi;Lee, Jeong-Joong;Kwon, Sang-Pill;Kim, Jin-Guk;Yu, Chang-Man;Lee, Jeong-Gyu;Jeon, Se-Jong;Jeong, Tae-Wan;Kang, Dong-Wann;Park, Sang-Il;Song, Oh-Young;Lee, Jong-Weon;Yoon, Kyung-Hyun;Han, Chang-Wan;Baik, Sung-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1832-1842
    • /
    • 2010
  • This paper introduces a new automatic processing system: "Contents Factory" for the mass production of contents. Through the contents factory, we provide an authoring environment to improve the usability and the efficiency in producing contents. The contents factory integrates recycling techniques for contents resources, contents development engines, authoring tools, and interfaces into a total processing system. Since it is multi-platform based including mobile devices as well as PCs, one can easily produce complete PC and mobile contents from raw resources. We produced an example, "Sejong square" via the contents factory in order to demonstrate its effectiveness and usability.

Studies on Expanding Application for the Recycling of Coal Ash in Domestic (국내 석탄재 재활용 확대 방안 연구)

  • Cho, Hanna;Maeng, Jun-Ho;Kim, Eun-young
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.563-573
    • /
    • 2017
  • Coal ash is generated from coal-fired thermal power plants every year. The remaining quantity of coal ash ends up in the landfills except for the recycled portion, and the existing ash pond capacity is limited almost. Currently, the difficulties are faced in building a new ash treatment plant because of the concerns about the environmental impacts of landfills at individual plant facilities. In terms of minimizing the environmental impact, the recycling and effective uses of coal ash are recognized as urgent issues to be challenged. Accordingly, this study examines the obstacles in expanding the recycling of the coal ash in South Korea and proposes solutions based on the case study analysis. The analysis results are as follows: 1) specific recycling guidelines and standards are required to be established in accordance with the contact medium (soil, ground water, surface water and sea water) and the chemical. 2) by providing the recognition environmentally safe in recycling the coal ash, transparency in establishing the planning stages and active communication with the community through promotion and research are essentially needed. 3) practical support system is required to encourage the power plant companies to use the coal ash as beneficial use.

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

Leaching of Ruthenium by Electro-generated Chlorine Gas by Electrochemical Method (전기화학법(電氣化學法)에 의해 생성(生成)된 전해생성(電解生成) 염소(鹽素)를 이용한 루테늄의 침출(浸出))

  • Ahn, Jong-Gwan;Lee, Ah-Rum;Kim, Min-Seuk;Ahn, Jae-Woo;Lee, Jae-Ryeoung
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.55-63
    • /
    • 2013
  • In this study, a electrochemical-chemical combined dissolution technology was conducted by electro-generated chlorine to obtain ruthenium solution from ruthenium metal. To find out the optimum leaching conditions of ruthenium in chloride solution, this leaching process was carried out on the variation of pH, reaction time, temperature and applied voltage at the electro-generated chlorine system in the reaction bath. Also, ozone generator was used to obtain ruthenium(III) chloride solution to increase the leaching rate. The optimum condition was observed at pH 10.0, $40^{\circ}C$ within 1 hr of reaction time that more than 88% of ruthenium(III) chloride dissolved.

The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products (재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교)

  • Park, Sung Cheol;Kim, Yong Hwan;Shin, Ho Jung;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.55-62
    • /
    • 2021
  • In Korea, a good recycled product (GR) certification system was introduced in 1997 to improve resource and energy use efficiency. However, in industry and society, recycled products are not used well because of the lack of awareness of recycled materials. In this study, the status of domestic and international quality standards for nickel materials was investigated, and the purity and electrochemical properties of nickel sulfate prepared from ore and nickel sulfate recovered from waste lithium-ion batteries were evaluated during the electroplating process. As a result of the test, it was found that there is no quality difference between recycled nickel sulfate and high-purity nickel sulfate reagents when used in the electroplating industry.