In IoT(Internet of Things) environment, users want to receive customized service by users' personal device such as smart watch and pendant. To fulfill this requirement, the mobile device should support a lot of functions. However, the miniaturization of mobile devices is another requirement and has limitation such as tiny display. limited I/O, and less powerful processors. To solve this limitation problem and provide customized service to users, this paper proposes a collaboration system for sharing various computing resources. The paper also proposes the method for reasoning and recommending suitable resources to compose the user-requested service in small device with limited power on expected time. For this goal, our system adopts MBTI(Myers-Briggs Type Indicator) to analyzes user's behavior pattern and recommends personalized resources based on the result of the analyzation. The evaluation in this paper shows that our approach not only reduces recommendation time but also increases user satisfaction with the result of recommendation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권10호
/
pp.3419-3437
/
2022
Anonymization technology is an important technology for privacy protection in the process of data release. Usually, before publishing data, the data publisher needs to use anonymization technology to anonymize the original data, and then publish the anonymized data. However, for data publishers who do not have or have less anonymized technical knowledge background, how to configure appropriate parameters for data with different characteristics has become a more difficult problem. In response to this problem, this paper adds a historical configuration scheme resource pool on the basis of the traditional anonymization process, and configuration parameters can be automatically recommended through the historical configuration scheme resource pool. On this basis, a privacy model hybrid recommendation algorithm for user satisfaction is formed. The algorithm includes a forward recommendation process and a reverse recommendation process, which can respectively perform data anonymization processing for users with different anonymization technical knowledge backgrounds. The privacy model hybrid recommendation algorithm for user satisfaction described in this paper is suitable for a wider population, providing a simpler, more efficient and automated solution for data anonymization, reducing data processing time and improving the quality of anonymized data, which enhances data protection capabilities.
Recently, various wearable personal devices such as a smart watch have been developed and these personal devices are being miniaturized. The user desires to receive new services from personal devices as well as services that have been received from personal computers, anytime and anywhere. However, miniaturization of devices involves constraints on resources such as limited input and output and insufficient power. In order to solve these resource constraints, this paper proposes a resource collaboration system which provides a service by composing sharable resources in the resource sharing environment like IoT. the paper also propose a method to infer and recommend user-customized resources among various sharable resources. For this purpose, the paper defines an ontology for resource inference. This paper also classifies users behavior types based on a user model and then uses them for resource recommendation. The paper implements the proposed method as a prototype system on a personal device with limited resources developed for resource collaboration and shows the effectiveness of the proposed method by evaluating user satisfaction.
This study analyzed the effect of the intrinsic and extrinsic attributes of gochujang, Korean red chili paste, on purchasing intention and recommendation intention for consumption. Survey participants were female, married, aged 30 - 39 years, and highly educated with graduation from a university. Most participants purchased gochujang 1 - 2 times per year, most commonly at a shopping mall, and acquired information on the gochujang product from an advertisement or sponsored TV shows. For the factor analysis, five variables for intrinsic quality were considered: namely, healthiness, economics, convenience, diversity, and sense, whereas three variables were considered for extrinsic quality: trust, external appearance, and image. The factor analysis also confirmed the correlation between the validity and the reliability of the purchasing and recommendation intentions. The effect of intrinsic quality of gochujang on purchasing and recommendation intentions was tested through a multiple regression analysis. The purchase intention was most significantly affected by healthiness, cost, and convenience. On the other hand, the recommendation intention was most significantly affected by the diversity and, to a lesser degree, by the healthiness of the product. Among the extrinsic qualities, trust of consumers and the product appearance had a significant effect on purchasing intention. Recommendation intention was significantly affected by the appearance. And trust significantly influenced the recommendation. Therefore, a concrete and systematic marketing approach considering these factors.
유비쿼터스 환경에서 모바일 단말기의 제한적인 자원 문제를 해결하기 위해 주변 자원을 실시간으로 공유하는 연구들이 진행되고 있다. 그리고 자원의 공유뿐만 아니라 상황 정보에 기반한 추론을 통해 개인 맞춤형 자원을 추천하는 연구도 활발히 진행되고 있다. 개인 맞춤형 자원 추천을 위하여 사용자의 기본 정보, 자원에 대한 선호도, 공유 대상이 되는 자원의 정보, 단말기의 위치, 시간과 같은 다양한 상황 정보는 효과적으로 공유 및 관리되어야 한다. 또한 신뢰성 있는 자원 추론을 위해 필요한 추론규칙을 검증하는 단계는 매우 중요하다. 이를 위해서 다양한 상황 정보를 구성하여 실제 단말기 상에서 자원 추론규칙이 올바르게 동작하는지 검증해야 하지만 이는 현실적으로 많은 비용과 시간이 필요하다. 따라서 본 논문애서는 이러한 문제점을 해결하기 위하석 추론 검증 도구를 제안한다. 제안하는 추론 검증도구는 편리한 그래픽 사용자 인터페이스를 제공하여 원하는 상황 정보를 쉽게 생성할 수 있고, 실제 단말기를 대신하여 동적인 상황 정보의 변경에 따른 추론을 정확하게 검증한다.
최근 스마트 폰과 같은 다양한 모바일 장치들의 개발과 함께 사용자는 자신의 모바일 단말을 이용하여 개인화된 서비스를 제공받기를 원한다. 이러한 요구사항을 만족하기 위하여 모바일 장치들은 많은 기능을 제공해야하지만 모바일 장치가 소형화됨에 따라 작은 디스플레이 장치, 제한적인 입력 장치 그리고 부족한 파워와 같은 자원 제약성을 갖는다. 본논문은이러한자원의제약성을해결하고사용자에게개인화된서비스를제공하기위하여유비쿼터스환경에서 컴퓨팅 자원을 공유하여 사용자에게 서비스를 제공하기 위한 환경을 제안한다. 또한 다양한 자원들 가운데 사용자의 상황과 개인 선호도를 기반으로 최적의 자원을 추천하기 위한 방법을 제안한다. 이러한 자원 추천을 위하여 본 논문에서는 사용자의 사용 이력으로부터 행동 유형을 분석하고 이를 기반으로 개인화된 자원을 추천하기위한 방법을 사용한다. 또한 논문은 제안한 방법을 구현하고 만족도를 평가하여 유효성을 보인다.
최근 사용자들이 생성한 콘텐츠들이 크게 늘어나고 커뮤니티 기반 웹 사이트가 발전함으로 인하여 사용자들에게 인터넷 자원을 추천하는 시스템이 큰 각광을 받고 있다. 그러나 대부분의 인터넷 자원 추천 시스템들은 사용자의 특징을 충분하게 반영하지 못하는 한계를 가지고 있다. 이에 따라 본 논문에서는 사용자의 특징이 충분히 반영되는 자원의 추천을 위하여 FOAF와 SNA를 사용한 추천 방법을 제안한다. 제안하는 방법은 1) FOAF를 통해 사용자의 특징 데이터와 태그 데이터를 취득한다. 2) 취득한 데이터를 세 종류의 행렬에 삽입하고 통합한 후 사용자, 사용자의 특징, 태그를 나타내는 그래프를 생성한다. 3) 소셜 네트워크 분석을 통해 추천 항목의 일반 특징과 핫태그(Hot tag)를 선정하여 인터넷 자원을 추천한다. 본 논문의 검증을 위하여 우리는 실험을 통해 본 논문에서 제안한 방법과 아이템 기반 추천 방법을 비교하였다. 이를 통해 보다 많은 사용자가 참여할수록 아이템 기반 추천 방법보다 본 논문에서 제안한 방법에 의한 추천 결과의 품질이 우수함을 확인하였다. 본 논문에서 제안하는 방법을 활용하면 사용자들에게 보다 적합한 자원을 추천하는 것이 가능하다. 그리고 제안하는 방법은 폭발적으로 늘어나는 인터넷 자원을 검색하는데 있어 효율적으로 활용될 수 있다.
A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.
최근의 여러 웹서비스에서는 태깅 기능을 제공함으로써 사용자가 작성하는 게시물의 주제를 표현하도록 유도하고 있다. 태그를 이용하면 글이나 사진에 대한 글쓴이의 감정과 같은 문맥적인 정보의 효과적인 추출이 가능하기 때문에, 기계적인 방식보다 글의 내용에 대해서 더 나은 의미 파악이 가능하다. 따라서 이를 추천시스템에 적용한다면 사용자의 만족도를 높일 수 있는 추천이 가능할 것이다. 본 논문에서는 게시글에 속한 태그들 간의 관계를 계산하고, 효율적인 유사도 측정 알고리즘을 통해 게시글과 사용자등의 웹 자원을 추천하는 방법을 제안한다. 마지막으로, 실험을 통해 제안한 방법의 유효성을 검증하고, 사용자의 만족도를 측정하였다.
하이브리드 클라우드 컴퓨팅 환경에서 많은 과학자들이 과학 응용을 수행하고 있으나, 클라우드 컴퓨팅 서비스를 제공하는 각 회사들의 자원 표기법이 상이하고 복잡하여 사용에 어려움이 따르고, 응용에 적합한 클라우드 자원을 선택하는 것이 어렵다. 클라우드 서비스 간에 상호 호환성을 제공해주는 하이브리드 클라우드 환경에서의 표준화된 자원 명세 표기법이 필요하다. 과학자들은 기존에 자신들이 수행했던 자원이나 가장 좋은 성능의 자원에서만 수행하려는 경향이 있어, 비용, 시간을 효율적으로 수행하면서 응용에 적합하고, 기존의 실험과 유사하게 진행할 수 있는 자원을 추천해주는 서비스가 필요하다. 하이브리드 클라우드 서비스의 표준화를 위해 인터클라우드 프로젝트가 진행되고 있으나, 과학 응용 실험에 적합한 자원의 선택을 위해 필요한 클라우드 자원의 특성들을 나타내는 데 한계가 있다. 본 논문에서는 하이브리드 클라우드 환경에서 시맨틱 클라우드 자원 서비스를 제안한다. 통계 기법으로 과학 응용의 특징에 따라 응용에 적합한 클라우드 자원을 그룹으로 분류하고 분류된 유사한 클라우드 자원 그룹을 가지고 시맨틱 클라우드 자원 추천 서비스 기법을 제공한다. 제안한 알고리즘을 통해 시맨틱 클라우드 추천 서비스 기법을 제공하면, 효율적인 자원의 가용성과 비용으로 응용을 수행할 수 있고, 응용에 적합한 클라우드 자원을 추천할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.