• 제목/요약/키워드: Resource Recommendation

검색결과 72건 처리시간 0.028초

MBTI-based Recommendation for Resource Collaboration System in IoT Environment

  • Park, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.35-43
    • /
    • 2017
  • In IoT(Internet of Things) environment, users want to receive customized service by users' personal device such as smart watch and pendant. To fulfill this requirement, the mobile device should support a lot of functions. However, the miniaturization of mobile devices is another requirement and has limitation such as tiny display. limited I/O, and less powerful processors. To solve this limitation problem and provide customized service to users, this paper proposes a collaboration system for sharing various computing resources. The paper also proposes the method for reasoning and recommending suitable resources to compose the user-requested service in small device with limited power on expected time. For this goal, our system adopts MBTI(Myers-Briggs Type Indicator) to analyzes user's behavior pattern and recommends personalized resources based on the result of the analyzation. The evaluation in this paper shows that our approach not only reduces recommendation time but also increases user satisfaction with the result of recommendation.

Hybrid Recommendation Algorithm for User Satisfaction-oriented Privacy Model

  • Sun, Yinggang;Zhang, Hongguo;Zhang, Luogang;Ma, Chao;Huang, Hai;Zhan, Dongyang;Qu, Jiaxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3419-3437
    • /
    • 2022
  • Anonymization technology is an important technology for privacy protection in the process of data release. Usually, before publishing data, the data publisher needs to use anonymization technology to anonymize the original data, and then publish the anonymized data. However, for data publishers who do not have or have less anonymized technical knowledge background, how to configure appropriate parameters for data with different characteristics has become a more difficult problem. In response to this problem, this paper adds a historical configuration scheme resource pool on the basis of the traditional anonymization process, and configuration parameters can be automatically recommended through the historical configuration scheme resource pool. On this basis, a privacy model hybrid recommendation algorithm for user satisfaction is formed. The algorithm includes a forward recommendation process and a reverse recommendation process, which can respectively perform data anonymization processing for users with different anonymization technical knowledge backgrounds. The privacy model hybrid recommendation algorithm for user satisfaction described in this paper is suitable for a wider population, providing a simpler, more efficient and automated solution for data anonymization, reducing data processing time and improving the quality of anonymized data, which enhances data protection capabilities.

Customized Resource Collaboration System based on Ontology and User Model in Resource Sharing Environments

  • Park, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.107-114
    • /
    • 2018
  • Recently, various wearable personal devices such as a smart watch have been developed and these personal devices are being miniaturized. The user desires to receive new services from personal devices as well as services that have been received from personal computers, anytime and anywhere. However, miniaturization of devices involves constraints on resources such as limited input and output and insufficient power. In order to solve these resource constraints, this paper proposes a resource collaboration system which provides a service by composing sharable resources in the resource sharing environment like IoT. the paper also propose a method to infer and recommend user-customized resources among various sharable resources. For this purpose, the paper defines an ontology for resource inference. This paper also classifies users behavior types based on a user model and then uses them for resource recommendation. The paper implements the proposed method as a prototype system on a personal device with limited resources developed for resource collaboration and shows the effectiveness of the proposed method by evaluating user satisfaction.

Effect of the quality of gochujang on purchasing and recommendation intentions

  • Han, A Reum;Jo, A Ra;Jang, Dong Heon
    • 농업과학연구
    • /
    • 제44권2호
    • /
    • pp.283-295
    • /
    • 2017
  • This study analyzed the effect of the intrinsic and extrinsic attributes of gochujang, Korean red chili paste, on purchasing intention and recommendation intention for consumption. Survey participants were female, married, aged 30 - 39 years, and highly educated with graduation from a university. Most participants purchased gochujang 1 - 2 times per year, most commonly at a shopping mall, and acquired information on the gochujang product from an advertisement or sponsored TV shows. For the factor analysis, five variables for intrinsic quality were considered: namely, healthiness, economics, convenience, diversity, and sense, whereas three variables were considered for extrinsic quality: trust, external appearance, and image. The factor analysis also confirmed the correlation between the validity and the reliability of the purchasing and recommendation intentions. The effect of intrinsic quality of gochujang on purchasing and recommendation intentions was tested through a multiple regression analysis. The purchase intention was most significantly affected by healthiness, cost, and convenience. On the other hand, the recommendation intention was most significantly affected by the diversity and, to a lesser degree, by the healthiness of the product. Among the extrinsic qualities, trust of consumers and the product appearance had a significant effect on purchasing intention. Recommendation intention was significantly affected by the appearance. And trust significantly influenced the recommendation. Therefore, a concrete and systematic marketing approach considering these factors.

상황 정보 온톨로지 기반 추론 검증 도구 (An Inference Verification Tool based on a Context Information Ontology)

  • 김목련;박영호
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권6호
    • /
    • pp.488-501
    • /
    • 2009
  • 유비쿼터스 환경에서 모바일 단말기의 제한적인 자원 문제를 해결하기 위해 주변 자원을 실시간으로 공유하는 연구들이 진행되고 있다. 그리고 자원의 공유뿐만 아니라 상황 정보에 기반한 추론을 통해 개인 맞춤형 자원을 추천하는 연구도 활발히 진행되고 있다. 개인 맞춤형 자원 추천을 위하여 사용자의 기본 정보, 자원에 대한 선호도, 공유 대상이 되는 자원의 정보, 단말기의 위치, 시간과 같은 다양한 상황 정보는 효과적으로 공유 및 관리되어야 한다. 또한 신뢰성 있는 자원 추론을 위해 필요한 추론규칙을 검증하는 단계는 매우 중요하다. 이를 위해서 다양한 상황 정보를 구성하여 실제 단말기 상에서 자원 추론규칙이 올바르게 동작하는지 검증해야 하지만 이는 현실적으로 많은 비용과 시간이 필요하다. 따라서 본 논문애서는 이러한 문제점을 해결하기 위하석 추론 검증 도구를 제안한다. 제안하는 추론 검증도구는 편리한 그래픽 사용자 인터페이스를 제공하여 원하는 상황 정보를 쉽게 생성할 수 있고, 실제 단말기를 대신하여 동적인 상황 정보의 변경에 따른 추론을 정확하게 검증한다.

유비쿼터스 환경에서 자원 공유를 위한 상황인지 기반 개인화 추천 (Personalized Recommendation based on Context-Aware for Resource Sharing in Ubiquitous Environments)

  • 박종현;강지훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권9호
    • /
    • pp.19-26
    • /
    • 2011
  • 최근 스마트 폰과 같은 다양한 모바일 장치들의 개발과 함께 사용자는 자신의 모바일 단말을 이용하여 개인화된 서비스를 제공받기를 원한다. 이러한 요구사항을 만족하기 위하여 모바일 장치들은 많은 기능을 제공해야하지만 모바일 장치가 소형화됨에 따라 작은 디스플레이 장치, 제한적인 입력 장치 그리고 부족한 파워와 같은 자원 제약성을 갖는다. 본논문은이러한자원의제약성을해결하고사용자에게개인화된서비스를제공하기위하여유비쿼터스환경에서 컴퓨팅 자원을 공유하여 사용자에게 서비스를 제공하기 위한 환경을 제안한다. 또한 다양한 자원들 가운데 사용자의 상황과 개인 선호도를 기반으로 최적의 자원을 추천하기 위한 방법을 제안한다. 이러한 자원 추천을 위하여 본 논문에서는 사용자의 사용 이력으로부터 행동 유형을 분석하고 이를 기반으로 개인화된 자원을 추천하기위한 방법을 사용한다. 또한 논문은 제안한 방법을 구현하고 만족도를 평가하여 유효성을 보인다.

FOAF와 SNA를 이용한 개선된 인터넷 자원 추천 방법 (Improved Internet Resource Recommendation Method using FOAF and SNA)

  • ;손종수;정인정
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.165-176
    • /
    • 2012
  • 최근 사용자들이 생성한 콘텐츠들이 크게 늘어나고 커뮤니티 기반 웹 사이트가 발전함으로 인하여 사용자들에게 인터넷 자원을 추천하는 시스템이 큰 각광을 받고 있다. 그러나 대부분의 인터넷 자원 추천 시스템들은 사용자의 특징을 충분하게 반영하지 못하는 한계를 가지고 있다. 이에 따라 본 논문에서는 사용자의 특징이 충분히 반영되는 자원의 추천을 위하여 FOAF와 SNA를 사용한 추천 방법을 제안한다. 제안하는 방법은 1) FOAF를 통해 사용자의 특징 데이터와 태그 데이터를 취득한다. 2) 취득한 데이터를 세 종류의 행렬에 삽입하고 통합한 후 사용자, 사용자의 특징, 태그를 나타내는 그래프를 생성한다. 3) 소셜 네트워크 분석을 통해 추천 항목의 일반 특징과 핫태그(Hot tag)를 선정하여 인터넷 자원을 추천한다. 본 논문의 검증을 위하여 우리는 실험을 통해 본 논문에서 제안한 방법과 아이템 기반 추천 방법을 비교하였다. 이를 통해 보다 많은 사용자가 참여할수록 아이템 기반 추천 방법보다 본 논문에서 제안한 방법에 의한 추천 결과의 품질이 우수함을 확인하였다. 본 논문에서 제안하는 방법을 활용하면 사용자들에게 보다 적합한 자원을 추천하는 것이 가능하다. 그리고 제안하는 방법은 폭발적으로 늘어나는 인터넷 자원을 검색하는데 있어 효율적으로 활용될 수 있다.

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.

태그의 문맥 정보를 이용한 웹 자원 추천 시스템 (Tag Based Web Resource Recommendation System)

  • 송제인;정옥란
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.133-141
    • /
    • 2016
  • 최근의 여러 웹서비스에서는 태깅 기능을 제공함으로써 사용자가 작성하는 게시물의 주제를 표현하도록 유도하고 있다. 태그를 이용하면 글이나 사진에 대한 글쓴이의 감정과 같은 문맥적인 정보의 효과적인 추출이 가능하기 때문에, 기계적인 방식보다 글의 내용에 대해서 더 나은 의미 파악이 가능하다. 따라서 이를 추천시스템에 적용한다면 사용자의 만족도를 높일 수 있는 추천이 가능할 것이다. 본 논문에서는 게시글에 속한 태그들 간의 관계를 계산하고, 효율적인 유사도 측정 알고리즘을 통해 게시글과 사용자등의 웹 자원을 추천하는 방법을 제안한다. 마지막으로, 실험을 통해 제안한 방법의 유효성을 검증하고, 사용자의 만족도를 측정하였다.

군집분석을 이용한 하이브리드 클라우드 컴퓨팅 환경에서의 시맨틱 클라우드 자원 추천 서비스 기법 (Semantic Cloud Resource Recommendation Using Cluster Analysis in Hybrid Cloud Computing Environment)

  • 안윤선;김윤희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권9호
    • /
    • pp.283-288
    • /
    • 2015
  • 하이브리드 클라우드 컴퓨팅 환경에서 많은 과학자들이 과학 응용을 수행하고 있으나, 클라우드 컴퓨팅 서비스를 제공하는 각 회사들의 자원 표기법이 상이하고 복잡하여 사용에 어려움이 따르고, 응용에 적합한 클라우드 자원을 선택하는 것이 어렵다. 클라우드 서비스 간에 상호 호환성을 제공해주는 하이브리드 클라우드 환경에서의 표준화된 자원 명세 표기법이 필요하다. 과학자들은 기존에 자신들이 수행했던 자원이나 가장 좋은 성능의 자원에서만 수행하려는 경향이 있어, 비용, 시간을 효율적으로 수행하면서 응용에 적합하고, 기존의 실험과 유사하게 진행할 수 있는 자원을 추천해주는 서비스가 필요하다. 하이브리드 클라우드 서비스의 표준화를 위해 인터클라우드 프로젝트가 진행되고 있으나, 과학 응용 실험에 적합한 자원의 선택을 위해 필요한 클라우드 자원의 특성들을 나타내는 데 한계가 있다. 본 논문에서는 하이브리드 클라우드 환경에서 시맨틱 클라우드 자원 서비스를 제안한다. 통계 기법으로 과학 응용의 특징에 따라 응용에 적합한 클라우드 자원을 그룹으로 분류하고 분류된 유사한 클라우드 자원 그룹을 가지고 시맨틱 클라우드 자원 추천 서비스 기법을 제공한다. 제안한 알고리즘을 통해 시맨틱 클라우드 추천 서비스 기법을 제공하면, 효율적인 자원의 가용성과 비용으로 응용을 수행할 수 있고, 응용에 적합한 클라우드 자원을 추천할 수 있다.