• Title/Summary/Keyword: Resonator Frequency

Search Result 810, Processing Time 0.026 seconds

Design and Fabrication of a Active Resonator Oscillator using Active Inductor and Active Capacitor with Negative Resistance (부성저항 특성을 갖는 능동 인덕터와 능동 캐패시터를 이용한 능동 공진 발진기 설계 및 제작)

  • 신용환;임영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1591-1597
    • /
    • 2003
  • In this paper, Active Resonator Oscillator using active inductor and active capacitor with HEMTs(agilent ATF­34143) is designed and fabricated. Active inductor with ­25$\Omega$ and 2.4nH in 5.5GHz frequency band and Active capacitor with ­14$\Omega$ and 0.35pF is designed. Active Resonator Oscillator for LO in ISM band(5.8GHz) is designed with active inductor and active capacitor. Active Resonator Oscillator has been simulated by Agilent ADS 2002C. Active Resonator oscillator implemented on the substrate which has the relative dielectric constant of 3.38, the height of 0.508mm, and metal thickness of 0.018mm. This Active Resonator Oscillator shows the oscillation frequency of 5.68GHz with the output power of ­3.6㏈m and phase noise of ­81㏈c/Hz at the offset frequency of 100KHz.

Design and Fabrication of Ka-band Push-push oscillator Using Dielectric Resonator (유전체 공진기를 이용한 Ka-band용 Push-push 발진기의 설계 및 구현)

  • 김민호;김병희;박천석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.385-388
    • /
    • 2000
  • In this paper, the Ka-band Dielectric resonator oscillator has been designed and fabricated. The resonator network was simulated using HFSS program. The design method of an oscillator is the small-signal S-parameter design. The Push-push DRO employs a hetero junction FET (NE32484A). The fabricated Push-push DRO shows such characteristics as the phase noise -106 ㏈c/Hz at the 100 ㎑ frequency offset. the output power and fundamental frequency surpression were -6 ㏈m and -29 ㏈c, respectively.

  • PDF

The study of the characteristic of the cylindrical dielectric resonator filter (원통형 유전체 공진기 필터 특성 연구)

  • 김주영;박도영;김종철;이기진
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.431-434
    • /
    • 2002
  • In this paper, The resonant frequencies of any modes in the dielectric resonator filter is determined by numberical analysis. The theoretical analysis for the dielectric resonator filter used Ansoft HFSS. We designed the dielectric resonator filter with resonant frequency 4.5 GHz. We describe the characteristics of delivering Power to resonator in different shaped coupling loops. Tile resonant mode of T $E_{01{\delta}}$ and T $E_{01{\delta}}$ could be selected by the horizontal and the vertical coupling loop.p.

  • PDF

Effect of Resonator Arrangement on Sound Absorption of Helmholtz Resonator Array Panel (공명기 분포에 따른 공명기 배열형 패널의 흡음특성 고찰)

  • 김상렬;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.288-291
    • /
    • 2004
  • The Helmholtz resonator is one of noise control elements widely used in many practical applications. However the resonator array system, which is sometimes used to reflect or absorb low frequency noise, has not been well studied. We have investigated the difference in sound absorption of the Helmholtz resonator array panel caused by change in the resonator arrangement. Experiments and numerical calculations for various Helmholtz resonator array panels are carried out and the results are compared each other. The comparisons show that the acoustic coupling between closely located resonators affects the performance of the sound absorbing system. Particularly, the distance between resonators has a significant effect on the broadness of the sound absorption coefficient.

  • PDF

Modeling of non-ideal frequency response in capacitive MEMS resonator (정전 용량형 MEMS 공진기의 비이상적 주파수 응답 모델링)

  • Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • In this paper, modeling of the non-ideal frequency response, especially "notch-and-spike" magnitude phenomenon and phase lag distortion, are discussed. To characterize the non-ideal frequency response, a new electro-mechanical simulation model based on SPICE is proposed using the driving loop of the capacitive vibratory gyroscope. The parasitic components of the driving loop are found to be the major factors of non-ideal frequency response, and it is verified with the measurement results.

Detection of the mechanical resonance of a micromechanical cantilever using dynamic flexural measurement technique and its mass sensing application

  • Kim, Hak-Seong;Yun, Ho-Yeol;Jeong, Un-Seok;Yu, Na-Ri;Park, Jeong-Ho;Lee, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.447-447
    • /
    • 2011
  • We studied to detect the mass variation using micro mechanical resonator. For measuring the resonance frequency of the micro mechanical system, optical method using laser interference is selected. A simple resonator is prepared by attaching an AFM cantilever on the piezo stack. The piezo stack makes a the cantilever vibrated with its resonance frequency. To change the mass of the resonator, gold was evaporated on the cantilever. We measured how much resonance frequency was changed according to the amount of gold attached on cantilever. This resonator is able to perform the role of a mass sensor and has a resolution of the order of micrograms. The fabrication of the resonator and measurement setup for detecting the mechanical resonance will be introduced in this presentation.

  • PDF

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.

A Study on Quantification of Damping Efficiency of Acoustic Cavities by Absorption Coefficient (흡음 계수를 이용한 연소불안정 제어용 음향공의 감쇠 정량화)

  • Cha, Jung-Phil;Song, Jae-Gang;Hong-Jip Kim;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.438-445
    • /
    • 2007
  • A Helmholtz resonator as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified by linear acoustic analysis and atmospheric acoustic tests. To compare the results of acoustic attenuation effect in accordance with uni-resonator's geometry, quantitative analyses were made in the cases of various orifice diameters and lengths. Next, in the experiments to compare the results of acoustic attenuation effect by a difference in the number of resonators, damping capacity of harmful resonant frequency was improved by the increase of the number of resonators. On the other hand, attenuation efficiency of the frequency tended rather to lower due to over damping from the point of view of absorption coefficient. As the result, tuning the suitable geometry for the resonator to the resonant frequency is required for the control using the resonator. Also, the design of resonator's geometry and the choice of its number are important to put up the optimal efficiency in consideration of restriction of its volume.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators (변형된 ELC 공진기와 다중 슬롯 공진기를 이용한 소형 4-비트 Chipless RFID 태그 )

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.516-521
    • /
    • 2022
  • In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.