• Title/Summary/Keyword: Resonant frequency(공진주파수)

Search Result 589, Processing Time 0.027 seconds

Studies on Miniaturization and Notched Wi-Fi Bandwidth for UWB Antenna Using a Wide Radiating Slot (넓은 방사 슬롯을 이용한 초광대역 안테나의 소형화와 Wi-Fi 대역의 노치에 관한 연구)

  • Beom, Kyeong-Hwa;Kim, Ki-Chan;Jo, Se-Young;Ko, Young-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.265-274
    • /
    • 2011
  • In this paper, it is studied on wide radiating slot antenna's miniaturization for ultra wide-band(UWB) technologies and notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service of IEEE standards 802.11 a/n. Proposed antenna that wide slot is decreased from $\lambda/2$ to $\lambda/4$ length of resonant frequency has decreased by 72 % compared with conventional antenna. And optimized T-shaped CPW-fed stub has satisfied UWB bandwidth for 3.0~11.8 GHz. Then, creating 2-order Hilbert curve slot line in the stub's patch area, 4.9~5.6 GHz that centered frequency is 5 GHz is eliminated. Finally, the designed antenna constructed on FR4-epoxy has $20{\times}15\;mm^2$ dimension. The measured results that are obtained return loss under -10 dB through 3.2~11.8 GHz without Wi-Fi bandwidth, a linear phase characteristic, a stable group delay, and omnidirectional radiation patterns are presented.

The influence of implant diameter, length and design changes on implant stability quotient (ISQ) value in artificial bone (임플란트의 직경, 길이 및 디자인변화가 임플란트 안정성지수(ISQ)에 미치는 영향)

  • Lee, Jeong-Yol;Lee, Won-Chang;Kim, Min-Soo;Kim, Jong-Eun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.292-298
    • /
    • 2012
  • Purpose: The purpose of this study is to ascertain the stability of the implant by comparing the effects of the change of implant diameter, length and design on implant stability quotient. Materials and methods: To remove the variable due to the difference of bone quality, the uniform density (0.48 g/$cm^3$) Polyuretane foam blocks (Sawbones$^{(R)}$, Pacific Research Laboratories Inc, Vashon, Washington) were used. Implants (Implantium$^{(R)}$, Dentium, Seoul, Korea) were placed with varying diameters (${\phi}3.8$, ${\phi}4.3$ and ${\phi}4.8$) and length (8 mm, 10 mm and 12 mm), to assess the effect on implant stability index (ISQ). Also the influence of the design of the submerged and the non-submerged (SimplelineII$^{(R)}$, Dentium, Seoul, Korea) on ISQ was evaluated. To exclude the influence of insertion torque, a total of 60 implants (n = 10) were placed with same torque to 35 N. Using Osstell$^{TM}$ mentor (Integration Diagnostic AB, Sweden) ISQ values were recorded after measuring the resonant frequency, one-way ANOVA and Tukey HSD test results were analyzed. (${\alpha}$=0.05). Results: 1. The change of the diameter of the implant did not affect the ISQ (P>.05), but the increase of implant length increased the ISQ(P<.001). 2. The change in implant design were correlated with the ISQ, and the ISQ of submerged design was significantly higher than that of the non-submerged design(P<.05). Conclusion: In order to increase implant stability, the longer implant is better to be selected, and on the same length of implant, submerged design is thought to be able to get a higher ISQ than the non-submerged.

Miniaturization of Microstrip Antenna Using the folded Structure (폴디드 구조를 이용한 마이크로스트립 안테나의 소형화)

  • Heo Hee-Moo;Jang Yon-Jeong;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.526-533
    • /
    • 2005
  • In this paper, the miniaturized the linear polarization and the circular polarization microstrip antennas, which are the two ends in the resonance length direction or all the four-ends were folded are designed and fabricated at the resonant frequency of 1.575 GHz(fur GPS system). For the linear polarization microstrip antenna, the antenna was bent. downward so that the visible length(=L) was reduced by $31.7\%(\varepsilon_r=1.06)$. The folded antenna was folded toward the center of the antenna once again. In this case, the visible length reduction rate, gain, -10 dB bandwidth, E-plane and H-plane HPBW were $73.9\%$, 5.12 dBd, $64MHz(4\%),\;151^{\circ}\;and\;79.2^{\circ}$, respectively. For the circular polarization microstrip antenna, the folded structure of the linear polarization antenna was applied to all the few directions. For the most efficiency the folded bottom surfaces were designed in a triangular shape. In this case, the visible area reduction rate, gain, -10 dB bandwidth, and HPBW in horizontal polarization of the z-x plane and the z-y plane were $71.5\%,\;3.96dBd,\;84MHz(5.3\%),\;80.6^{\circ}\;and\;82.1^{\circ}$, respectively. Therefore, we have confirmed that the folded structure is suitable fer the miniaturization of the microstrip antenna.

Low-temperature Sintering and Dielectric Properties of $CaZrO_3-CaTiO_3$ Ceramics for Middle- Permittivity LTCC Substrate (중유전율 LTCC 기판용 $CaZrO_3-CaTiO_3$계 세라믹스의 저온소결 및 유전특성)

  • Park Jeong-Hyun;Choi Young-Jin;Ko Won-Jun;Park Jae-Hwan;Park Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.17-22
    • /
    • 2004
  • The microwave dielectric properties of $CaZrO_3$ ceramics with addition of $CaTiO_3$ were studied. The effect of glass addition on the low-temperature sintering and microwave dielectric properties of $CaZrO_3-CaTiO_3$ ceramics were also evaluated to develop the materials for functional substrates of low-temperature co-fired ceramics. When $10-20 wt\%$ of lithium borosilicate glass was added, the sintering temperature of the $CaZrO_3-CaTiO_3$ ceramics decreased from $1450^{\circ}C$ to below $900^{\circ}C$. As the $T_f$ of glass frits and $CaZrO_3$ are slightly negative and that of $CaTiO_3$ is significantly positive, zero $T_f$ could be realized by mixing an appropriate amount of $CaTiO_3$ with $CaZrO_3$. The $CaZrO_3-CaTiO_3$ ceramics sintered at $875^{\circ}C$ with $15wt\%$ glass frits showed the relative density of $98\%$, permittivity of 23, quality factor of 2500 GHz, and temperature coefficient of resonant frequency of $ -3 ppm/^{\circ}C$.

  • PDF

Design of a Double-Faced Monopole Antenna Using the Coupling Effect of Induced Currents (유도 전류의 커플링 효과를 이용한 모노폴 안테나 설계)

  • Choi, Young;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1327-1336
    • /
    • 2012
  • In this paper, the dual-faced monopole antenna, which is arranged by numerous rectangular ring patches in sequence for the multi-bands is proposed. The ring type structure of the patch can be increased the bandwidth. Therefore the bandwidth and beam width are improved by using multiple arrayed patches. When the ring type patches are inserted serially, the resonance frequencies are occurred by the current flow from the first ring patch. It is possible because the gap between the patches is very narrow. In addition, if the patches are composed on the same plane as the feed-line, fabrication could be very difficult because the gap between the patches is extremely narrow. The thickness and permittivity of the antenna, moreover, are very important parameters because both sides of the substrate are used. We finally found the optimal thickness and permittivity to generate the coupling effect by simulation. All patches are consisted of 4-steps which the patch size was decreased 85 % by each step. In conclusion, the resonant frequency bands are 1.75~2.6 GHz(850 MHz), 3.24~3.46 GHz(220 MHz), 3.8~4.0 GHz(200 MHz), and 4.4~4.9 GHz(500 MHz).

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

Microwave Dielectric Properties and Multilayer Characteristics of (1-x)BiNbO4-xCaNb2O6 Ceramics ((1-x)BiNbO4-xCaNb2O6 세라믹스의 마이크파 유전특성 및 적층체 특성)

  • Kim, Eung-Soo;Choi, Woong;Kim, Jong-Dae;Kang, Seung-Gu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1190-1196
    • /
    • 2002
  • Microwave dielectric properties and multilayer characteristics $(1-x)BiNbO_4-xCaNb_2O_6$ (0${\le}$x${\le}$1.0) ceramics were investigated as a function of $CaNb_2O_6$ content. In the composition range of 0.25${\le}$x${\le}$0.75, the mixture phases of $BiNbO_4$ with stibotantalate structure and $CaNb_2O_6$ with columbite structure were detected and secondary phase or phase transition were not detected. Dielectric constant (K) of $(1-x)BiNbO_4-xCaNb_2O_6$ ceramics was largely dependent on the existing phase and could be estimated by the dielectric mixing rule calculated from maxwell equation. Typically, dielectric constant (K) of 26, quality factor (Qf) of 4300 GHz and Temperature Coefficient of resonant Frequency (TCF) of -18 ppm/${\circ}C$ were obtained for $0.5BiNbO_4-0.5CaNb_2O_6$ specimens with 0.8 wt% $CuV_2O_6$ sintered at 1000${\circ}C$ for 3h. The deviation of X-Y shrinkage and camber value of the multilayers obtained from $0.5BiNbO_4-0.5CaNb_2O_6$ green sheet sintered at 850∼950${\circ}C$ for 20 min. were smaller than those of $BiNbO_4$ multilayers.

Crystal structure refinement and microwave dielectric characteristic of $(1-x)CaTiO_3-x(La_{1/3}Nd_{1/3})TiO_3$ ($(1-x)CaTiO_3-x(La_{1/3}Nd_{1/3})TiO_3$계의 결정구조 해석 및 마이크로파 유전 특성)

  • 조남웅;성경필;문종하;최주현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.478-486
    • /
    • 1998
  • $CaTiO_3-x(La_{1/3}Nd_{1/3}TiO_3\;(0\le \textrm x\le0.8)$ system was prepared by reaction of $CaCO_3,\;LaO_3,\;Nd_2CO_3$ and ,TEX>$TiO_2$ mixture at 1673 K, which can be applied for microwave dielectric ceramic materials. The lattice parameters of(1-x))$CaTiO_3-x(La_{1/3}Nd_{1/3}TiO_3\;(0\le \textrm x\le0.8)$ system increased with the increase of x. Its structure was investigated by Rietveld profile-analysis of XRD in detail. Cations $ La^{3+}$ and Nd^{3+}$ were located at the $Ca^{2+}$ site in the range of $0\le \textrm x\le0.8$. crystal structure in $;(0\le \textrm x\le0.6)$ maintained space group Pnma with CaTiO_3 structure. The tiled and distorted $TiO_6$ was gradually released with the increase of x in $0\le \textrm x\le0.6$ .The structure was changed to a new space group of $Pmn2_1$ at the x value of 0.8. The relative dielectric constant $(\epsilon_r)$ of $(1-x)CaTiO_3-x(La_{1/3} Nd_{1/3})TiO_3$ ($(0\le \textrm x\le0.8)$) system was exponentially decreased by with the increased of x. The temperature coefficient of resonant frequency $(\tau_f)$ decreased with the increase of x in $0\le \textrm x\le0.6$ and then increased again at x=0.8 due to the change of crystal structure. The value of Q$\cdot f_o$ was 13800 (GHz) at x=0.2 and was very low under 2000 (GHz) in 0.4$\leq$x$\leq$0.8.

  • PDF

Fabrication of a Novel Ultra Low Temperature Co-fired Ceramic (ULTCC) Using BaV2O6 and BaWO4 (BaV2O6와 BaWO4을 이용한 초저온 동시소성 세라믹 제조)

  • Kim, Duwon;Lee, Kyoungho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • A novel microwave dielectric composite material for ultra-low temperature co-fired ceramics (ULTCC) with (1-x)BaWO4-xBaV2O6 (x=0.54~0.85) composition was prepared by firing a mixture of BaWO4 and BaV2O6. Shrinkage tests showed that the ceramic composite begins to densify at a temperature as low as 550℃ and can be sintered at 650℃ with 98% of relative density under the influence of BaV2O6. X-ray diffraction analysis showed that BaWO4 and BaV2O6 coexisted and no secondary phase was detected in the sintered bodies, implying good chemical compatibility between the two phases. Near-zero temperature coefficients of the resonant frequency (𝛕f) could be achieved by controlling the relative content of the two phases, due to their positive and negative 𝛕f values, respectively. With increasing BaV2O6 (x from 0.53 to 0.85), the 𝛕f value of the composites increased from -7.54 to 14.49 ppm/℃, εr increased from 10.08 to 11.17 and the quality factor (Q×f value) decreased from 47,661 to 37,131 GHz. The best microwave dielectric properties were obtained for x=0.6 samples with εr=10.4, Q×f=44,090 GHz, and 𝛕f=-2.38 ppm/℃. Chemical compatibility experiments showed the developed composites are compatible with aluminum electrode during co-firing process.