• Title/Summary/Keyword: Resonant frequencies

Search Result 451, Processing Time 0.025 seconds

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

  • Hanjong Kim;Jaehoon Lee;Changwan Han;Seonghun Park
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.461-471
    • /
    • 2023
  • The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.

Acoustofluidic Separation of Elastic and Rigid Microspheres (탄성 및 강성 마이크로입자의 음향미세유체역학적 분리)

  • Mushtaq Ali;Song Ha Lee;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • Microparticle separation has demonstrated significant potential for biological, chemical, and medical applications. We introduce a surface acoustic wave (SAW)-based microfluidic device for separation of elastic and rigid microspheres based on their property and size. By tuning the SAWs to match the resonant frequencies of certain microspheres, those particles could be selectively separated from the other microspheres. When microspheres are exposed to an acoustic field, they experience the SAW-induced acoustic radiation force (ARF), whose magnitude is dependent on the microparticle size and properties. We modeled the SAW-induced ARF based on elastic sphere theory and conducted a series of experiments to separate elastic and rigid microspheres. We further utilized the acoustofluidic method for the separation of Thalassiosira Eccentrica microalgae based on the differences in their sizes with purity exceeding 90%. We anticipate that our technique will open up new possibilities for sample preparation, detection, and diagnosis in various emerging biological and medical analyses.

Design and Fabrication of CMOS Low-Power Cross-Coupled Voltage Controlled Oscillators for a Short Range Radar (근거리 레이더용 CMOS 저전력 교차 결합 전압 제어 발진기 설계 및 제작)

  • Kim, Rak-Young;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.591-600
    • /
    • 2010
  • In this paper, three kinds of 24 GHz low-power CMOS cross-coupled voltage controlled oscillators are designed and fabricated for a short-range radar applications using TSMC 0.13 ${\mu}m$ CMOS process. The basic CMOS crosscoupled voltage controlled oscillator is designed for oscillating around a center frequency of 24.1 GHz and subthreshold oscillators are developed for low power operation from it. A double resonant circuit is newly applied to the subthreshold oscillator to improve the problem that parasitic capacitance of large transistors in a subthreshold oscillator can push the oscillation frequency toward lower frequencies. The fabricated chips show the phase noise of -101~-103.5 dBc/Hz at 1 MHz offset, the output power of -11.85~-15.33 dBm and the frequency tuning range of 475~852 MHz. In terms of power consumption, the basic oscillator consumes 5.6 mW, while the subthreshold oscillator does 3.3 mW. The subthreshold oscillator with the double resonant circuit shows relatively lower power consumption and improved phase noise performance while maintaining a comparable frequency tuning range. The subthreshold oscillator with double resonances has FOM of -185.2 dBc based on 1 mW DC power reference, which is an about 3 dB improved result compared with the basic oscillator.

Broadband Transmission Noise Reduction Performance of Smart Panels Featuring Piezoelectric Shunt Damping and Passive Characteristics (압전감쇠와 수동적 특성을 갖는 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;김재환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2002
  • The possibility of a broadband noise reduction of piezoelectric smart panels is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing material is bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to tune the piezoelectric shunt circuit, the measured electrical impedance model is adopted. Resonant shunt circuit composed of register and inductor in stories is considered and the circuit parameters are determined based on maximizing the dissipated energy through the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a square crosses sectional tunnel and a loud speaker is mounted at one side of the tunnel as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across the panels is measured. Noise reduction performance of a double smart panel possessing absorbing material and air gap shows a good result at mid frequency region except the first resonance frequency. By enabling the piezoelectric shunt damping, noise reduction is achieved at the resonance frequency as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Microwave Dielectric Properties and Far Infrared Spectrum of $(Pb_{1-x}Ca_x)(Fe_{0.5}Ta_{0.5})O_3$ Ceramics ($(Pb_{1-x}Ca_x)(Fe_{0.5}Ta_{0.5})O_3$ 세라믹스의 마이크로파 유전특성 및 Far Infrared Spectrum)

  • 박흥수;윤기현;김응수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.256-262
    • /
    • 2000
  • The dielectric properties of complex perovskite ($Pb_{1-x}Ca_{x}$)($Fe_{0.5}Ta_{0.5}$)$O_{3}$ with >($0.5{\le}x{\ge}0.65$ were investigated at microwave frequencies. Dilectric constant decreased with increasing Ca content, and was directly proportional to the cube of average ionic ra야 of A-site. For the specimen of x=0.6 sintered at $1250^{\circ}C$ for 3 h in air, dielectric constant (k) of 63, QF of 11000 GHz, and the temperature coefficient of resonant frequency(TCF) of -14ppm/$^{\circ}C$ were obtained. As Ca content increased, TCF of the specimen negatively increased due to the reduction of the tolerance factor(t). Changes in intrinsic loss with varying Ca content was investigated by the infrared reflectivity spectra ranging 50 to 4000 $cm^{-1}$, which were calculated by the Kramers-Kronig analysis and classical oscillator model. The relative tendency of microwave dielectric properties of the ($Pb_{1-x}Ca_{x}$)($Fe_{0.5}Ta_{0.5}$)$O_{3}$ specimens calculated from the reflectivity data were in good agreement with the results by the post resonant method.

  • PDF

Analysis of Periodic Stepped Impedance Ring Resonator by the Effect of Step Perturbation and Application of Dual-Mode Bandpass Filter (스텝 Perturbation의 영향에 따른 주기적 스텝 임피던스 링 공진기의 해석 및 이중 모드 대역 통과 필터의 적용)

  • Lee, Ju-Gab;Lee, Wu-Seong;Ryu, Jae-Jong;Moon, Yeon-Kwan;Kim, Ha-Chul;Choi, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.739-747
    • /
    • 2007
  • Dual-mode bandpass filter was designed by using periodic stepped impedance ring resonator with step perturbation. The periodic stepped impedance ring resonator has the effects of size reduction and $2^{nd}$ harmonic suppression by changing characteristic impedance ratio. The perturbation for dual-mode generation was also easily controlled by characteristic impedance ratio, and the variation of dual-mode resonant frequencies and attenuation pole frequencies were analyzed by the effect of step perturbation. Chip capacitors were used for input/output coupling, and the variation of center frequency by the coupling capacitance and step perturbation was also considered. From the results, two types of 2 GHz dual-mode bandpass filter were fabricated in size of $14{\times}14mm^2$, those have different attenuation poles and bandwidths. The measured results of proposed bandpass filters showed a good agreement with the calculated estimations, and those have insertion loss of 2.52, 0.52 dB and 3 dB bandwidth of 4.03, 15.02 %, respectively.

Broadband Hybrid Antenna with Directional Radiation Pattern Utilizing Epsilon Negative Zeroth-Order Resonance (ENG 영차 공진을 이용하여 대역폭이 개선되고 지향성 방사 패턴을 갖는 하이브리드 안테나)

  • Kim, In-Ho;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.886-892
    • /
    • 2010
  • In this paper, the hybrid antenna utilizing epsilon negative zeroth-order resonance(ENG ZOR) and $TM_{010}$-mode is presented. The antenna has a directional radiation pattern and improved bandwidth. To obtain a ENG ZOR and $TM_{010}$-mode, the hybrid antenna employs the mushroom structure and the microstrip patch, respectively. Two antennas of the mushroom and the patch are coupled by gap and fed by one coaxial feed. The frequencies of ENG ZOR and of $TM_{010}$ resonance are designed to be 4 GHz and 3.9 GHz, respectively. Because two resonant frequencies are set to be close, the dual-resonance can be formed, resulting in the broader bandwidth. Even though the radiation pattern of an ENG ZOR antenna is omnidirectional, the directional radiation of a microstrip patch antenna compensates the null of omnidirectional pattern of an ENG ZOR antenna. Thus, the hybrid antenna has a directional radiation pattern. The antennas having 4, 3, and 2 unit cells of mushroom structure are designed and analyzed. The antennas have fractional bandwidths of 4.29~4.95 %, gains of 3.16~5.57 dBi, and radiation efficiencies of 62.4~94.2 %.