• Title/Summary/Keyword: Resonant elements

Search Result 126, Processing Time 0.024 seconds

New topology of Partial Resonant Type Buck-Boost Chopper (부분공진형 승.강압 초퍼의 새로운 토포로지)

  • 고강훈;라병훈;권순걸;구헌회;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.39-42
    • /
    • 1998
  • This paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operated when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

Efficiency Improvement of New Soft Switching Type Buck-Boost Chopper (새로운 소프트 스위칭형 벅-부스터 컨버터의 효율개선)

  • 고강훈;곽동걸;서기영;권순걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.44-48
    • /
    • 1998
  • In the buck-boost DC-DC converter which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.

Analysis and Design of a High Voltage Flyback Converter with Resonant Elements

  • Hong, Sung-Soo;Ji, Sang-Keun;Jung, Young-Jin;Roh, Chung-Wook
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.107-114
    • /
    • 2010
  • This paper presents the operational characteristics of a high voltage flyback converter with resonant elements. In high voltage low power applications, the effect of a transformer’s stray capacitance might be the most important factor that influences the overall performance of the circuit. A detailed mode analysis and the design procedure are presented in designing the high voltage flyback converter. To verify and confirm the validities of the presented analysis and design procedure, a computer simulation and experiments have been performed.

Analysis and Simulation of New Soft Switching Buck-Boost Chopper (새로운 소프트 스위칭 벅-부스터 초퍼의 해석 및 시뮬레이션)

  • Ko, K.H.;Kwon, S.K.;Kwak, D.K.;Lee, Hyung-Woo;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2036-2038
    • /
    • 1998
  • In the buck-boost DC-DC chopper which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

Novel Zero-Current-Transition PWM DC/DC Converters (새로운 Zero-Current-Transition PWM DC/DC 컨버터)

  • 이민광;이동윤;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • In this paper, a novel Zero-Current-Transition (ZCT) technique, which provides Zero-Current-Switching (ZCS) turn-off of the main switch, the main diode and the auxiliary switch, is presented. The proposed auxiliary circuit consists of minimum elements only one auxiliary switch, resonant inductor and resonant capacitor. Also the reduced di/dt, which is obtained by resonant inductor, helps soft turn-on of the main switch. Besides, to eliminate the additional conduction loss and current stress on main switch, a topological variation was performed. The theoretical analysis and the operation principle of the new ZCT techniques are described in detail with a boost converter as an example. To verify the validity of the proposed ZCT techniques, the simulation and the experiment were performed under 1kW output power and 100kHz switching frequency.

  • PDF

Single-Phase converter with partial resonant circuit (단상 컨버터의 부분공진 회로)

  • Lee, Hyun-Woo;Kwak, Dong-Kurl
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.129-131
    • /
    • 1993
  • Power conversion system of high performance requires high switching frequency power converter. In order to minimize commutation stress and switching losses, in this paper, AC-DC converter is embedded a partial resonant DC-Link circuit with the object of ZVCS(zero voltage switching and zero current switching). The partial resonant occurs just before converter switch operates. Thus, VA ratings of the elements and their dissipations due to effective series resistance (ESR) are very low. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

A Note on the Proper Size of a Finite Element for Analysis of Harbor Resonance Problems (항만부진동 해석을 위한 적정 유한요소 크기에 대한 소고)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.86-93
    • /
    • 2002
  • In this study, numerical experiments were performed to decide the proper size off finite element for the analysis of harbor resonance problems. Various sizes of finite elements were considered from 1/3 to 1/60 of wavelength to model a fully opened rectangular harbor. Through the numerical results, the proper number of finite elements per wavelength were revealed to be nine within two percents errors allowed in resonant period and amplification ratio, while twelve within one percent error. It was fecund that error rates of resonant periods decrease linearly, while those of amplification ratio decrease with oscillating form as the size of an element decreases. The error of amplification ratio increases more rapidly than that of resonant period in case of element numbers below nine.

Bandwidth Improvement of a Multi-resonant Broadband Acoustic Transducer (다중 공진 광대역 음향변환기의 대역폭 개선)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • A multi-resonant broadband acoustic transducer with six Tonpilz elements operating at different resonant frequencies in a transducer assembly was fabricated, tested, and analyzed. A compensated transducer, modified by adding series inductance to the developed multi-resonant broadband transducer, was shown to provide improved bandwidth performance with a relatively more uniform frequency response compared with the uncompensated transducer. By controlling the series inductance, flat frequency response characteristics at two frequency bands were obtained over the range 38-52 kHz with 1.1 mH inductance and 50-60 kHz with 0.4 mH inductance. These results suggest that the operating frequency of the developed multi-resonant broadband transducer in a chirp echo sounder can be shifted to a different frequency band that is optimized according to the environment for more effective echo surveys of fishing grounds.