• Title/Summary/Keyword: Resonant current

Search Result 960, Processing Time 0.024 seconds

A New CW CO2 Laser with Precise Output and Minimal Fluctuation by Adopting a High-frequency LCC Resonant Converter

  • Lee, Dong-Gil;Park, Seong-Wook;Yang, Yong-Su;Kim, Hee-Je;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.842-848
    • /
    • 2011
  • The current study proposes the design of a hybrid series-parallel resonant converter (SPRC) and a three-stage Cockcroft-Walton voltage multiplier for precisely adjusting the power generated by a continuous wave (CW) $CO_2$ laser. The design of a hybrid SPRC, called LCC resonant converter, is described, and the fundamental approximation of a high-voltage and high-frequency (HVHF) transformer with a resonant tank is discussed. The results of the current study show that the voltage drop and ripple of a three-stage Cockcroft-Walton voltage multiplier depend on frequency. The power generated by a CW $CO_2$ laser can be precisely adjusted by a variable-frequency controller using a DSP (TMS320F2812) microprocessor. The proposed LCC converter could be used to obtain a maximum laser output power of 23 W. Moreover, it could precisely adjust the laser output power within 4.3 to 23 W at an operating frequency range of 187.5 to 370 kHz. The maximum efficiency of the $CO_2$ laser system is approximately 16.5%, and the minimum ripple of output voltage is about 1.62%.

A Study on the Series and Parallel Resonant Filters for Harmonic Currents Reduction of Nonlinear Loads (비선형부하의 고조파전류 저감을 위한 직렬 및 병렬 동조필터에 관한 연구)

  • 김경철;강윤모;백승현;김종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.113-118
    • /
    • 2003
  • This paper characterizes typical nonlinear loads into two types of harmonic sources, i.e., harmonic voltage source and harmonic current source. A series resonant filter is very effective in harmonic reduction for harmonic voltage source type of nonlinear loads such as personal computer loads with smoothing dc capacitors. A parallel resonant filter is suited for current source type of nonlinear loads such as ac drives with smoothing dc reactors. General compensation characteristics and comparison of series and parallel resonant filters are given analytically and experimentally. Compliance with IEC Std 1000-3-2 has been evaluated for limiting harmonic distortion.

Design Methodology for Transformers Including Integrated and Center-tapped Structures for LLC Resonant Converters

  • Jung, Jee-Hoon;Choi, Jong-Moon;Kwon, Joong-Gi
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.215-223
    • /
    • 2009
  • A design methodology for transformers including integrated and center-tapped structures for LLC resonant converters is proposed. In the LLC resonant converter, the resonant inductor in the primary side can be merged in the transformer as a leakage inductance. And, the absence of the secondary filter inductor creates low voltage stress on the secondary rectifiers and is cost-effective. A center-tapped structure of the transformer secondary side is widely used in commercial applications because of its higher efficiency and lower cost than full-bridge structures in the rectifying stages. However, this transformer structure has problems of resonance imbalance and transformer inefficiency caused by leakage inductance imbalance in the secondary side and the position of the air-gap in the transformer, respectively. In this paper, gain curves and soft-switching conditions are derived by first harmonic approximation (FHA) and operating circuit simulation. In addition, the effects of the transformer including integrated and center-tapped structures are analyzed by new FHA models and simulations to obtain an optimal design. Finally, the effects of the air-gap position are analyzed by an electromagnetic field simulator. The proposed analysis and design are verified by experimental results with a 385W LLC resonant converter.

Design and Development of a High-Voltage Transformer-less Power Supply for Ozone Generators Based on a Voltage-fed Full Bridge Resonant Inverter

  • Amjad, Muhammad;Salam, Zainal;Facta, Mochammad;Ishaque, Kashif
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.387-398
    • /
    • 2012
  • It is known that transformer based power supplies for ozone generators have low efficiency, high cost and exhibits a limited frequency range of operation. To overcome these disadvantages, this paper proposes a high frequency ozone generator with the absence of a transformer. The voltage step-up is achieved only by utilizing the resonant tank. This is made possible by a novel combination of ozone chamber materials that allow ozone to be generated at only 1.5 - 3.5 $kV_{p-p}$. The input to the resonant tank is driven by a PWM full bridge resonant inverter. Furthermore, zero-current zero-voltage switching (ZCZVS) operation is achieved by employing a duty factor of 25% between the switches of the full bridge. The advantages of the proposed system include high efficiency, low cost and the ability to control ozone production by varying the input voltage to the inverter. The prototype is verified by both simulation and experimental results.

Analysis of the Charging Characteristics of High Voltage Capacitor Chargers Considering the Transformer Stray Capacitance

  • Lee, Byungha;Cha, Hanju
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.329-338
    • /
    • 2013
  • In this paper, the charging characteristics of series resonant type high voltage capacitor chargers considering the transformer stray capacitance have been studied. The principles of operation for the four operational modes and the mode changes for the four different switching frequency sections are explained and analyzed in the range of switching frequency below the resonant frequency. It is confirmed that the average charging currents derived from the above analysis results have non-linear characteristics in each of the four modes. The resonant current, resonant voltage, charging current, and charging time of this capacitor charger as variations of the switching frequency, series parallel capacitance ratio ($k=C_p/C_s$), and output voltage are calculated. From the calculation results, the advantages and disadvantages arising from the parallel connection of this stray capacitance are described. Some methods to minimize charging time of this capacitor charger are suggested. In addition, the results of a comparative test using two transformers whose stray capacitances are different are described. A 1.8 kJ/s prototype capacitor charger is assembled with a TI28335 DSP controller and a 40 kJ, 7 kV capacitor. The analysis results are verified by the experiment.

A New Load Resonant Inverter Topology Considering Stray Inductance Influences for Induction Heating (부유 인덕턴스를 고려한 새로운 유도 가열용 부하 공진형 인버터)

  • Lee, Byung-Kuk;Yoo, Sang-Bong;Suh, Bum-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.416-419
    • /
    • 1995
  • An analysis of a new load resonant inverter considering stray inductance is given. There are several different types for load resonant inverters. They can offer zero turn-on as well as zero turn-off switching losses, yielding high efficiency at high power and high frequencies. However, they didn't consider the influences of stray inductance. In conventional topology using lossless snubber capacitor, stray inductances result in very high frequency resonant current. Especially, these influences can be problematic in high power system such as induction heating system with large current of some 10A associated with it. These currents increase EMI problem, give harmful effects in gate driver's operation and increase loss of dc-link capacitor as well as snubber capacitor. Therefore, the effect of stray inductances should be treated and reduced. This paper presents a new load resonant inverter topology, which can reduce the effect of stray inductances.

  • PDF

Design of 9 kJ/s High Voltage LiPo Battery based 2-stage Capacitor Charger (배터리 기반 2단 충전 9 kJ/s 고전압 충전기 설계)

  • Cho, Chan-Gi;Jia, Ziyi;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.268-272
    • /
    • 2019
  • A lithium polymer battery-based 9 kJ/s high-voltage capacitor charger, which comprises two stages, is proposed. A modified LCC resonant converter and resonant circuit are introduced at the first and second stages, respectively. In the first stage, the methods for handling low-voltage and high-current batteries are considered. Delta-wye three-phase transformers are used to generate a high output voltage through the difference between the phase and line-to-line voltages. Another method is placing the series resonant capacitor of the LCC resonant components on the transformer secondary side, which conducts considerably low current compared with the transformer primary side. On the basis of the stable operation of the first charging stage, the secondary charging stage generates final output voltage by using the resonance. This additional stage protects the rectifying diodes from the negative voltage when the output capacitor is discharged for a short time. The inductance and capacitance of the resonance components are selected by considering the resonance charging time. The design procedure for each stage with the aforementioned features is suggested, and its performance is verified by not only simulation but also experimental results.

A Study on the Design of the Class E Resonant Rectifier with a Series Capacitor (직력 캐패시터를 가진 E급 공진형 정류기 설계에 관한 연구)

  • 김남호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • Higher frequency of energy transfer or at least energy conversion has to be used in order to reduce the size of inductors and capacitors required in the power supplies. Conventional PWM switching-mode power supplies have a limitation of operating frequency due to switching losses in the switching transistors and rectifier diodes. Means of reducing switching losses have been developed for high-frequency resonant amplifiers or more exactly dc/ac inverters. Because of smooth current and voltage waveforms resonant convertesrs havelower device switching losses and stresses lower electromagnetic interference(EMI) and lower noise than PWM converters. Therefore in this paper design equations of Classs E resonant low dv/dt rectifier with a series resonant capacitor drived using Fourier series techniques. The theory is compared with simulation results obtained for the rectifier operating at 10[MHz] ac input and 5[V] coutput.

  • PDF

External Resonant Ignitior for HID Lamps by Using the Transformer (변압기를 이용한 외장형 HID 램프용 공진형 이그니터)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.9-16
    • /
    • 2014
  • The electronic ballast for HID lamps needs high ignition voltage which is consisted of high voltage pulse ignitor. However, In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. However, the resonant circuit which is consisted of LC occurs over current, so the capacity of the ignitor increases. The capacity of the ignitor can be reduced by using the transformer. In this case, the capacitor for resonance is installed to the secondary of the transformer, and the capacitor needs high withstanding voltage. Therefore, it needs to do the research on a resonant ignition to reduce the voltage over the resonant capacitor by dividing the secondary of the transformer.

The Design and Applications of LCC Resonant Converter (LCC 공진형 컨버터를 적용한 산업용 전원장치 응용연구)

  • Ahn, Suk-Ho;Jang, Sung-Roc;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.566-572
    • /
    • 2015
  • This study introduces an LCC resonant converter operating on a continuous conduction mode. The LCC resonant converter has the advantage of improving system efficiency, especially under the rated load condition, because it can reduce conduction loss by improving the resonance current shape and switching loss by increasing the lossless snubber capacitance. The proposed LCC resonant converter is applied to various applications, including a 60 kW EV fast charger, a 24 kJ/s high-voltage capacitor charger, and a 20 kV, 20 kW high-precision DC power supply. Experimental results prove that the proposed LCC resonant converter topology can be effectively used as a converter topology for these applications.