• 제목/요약/키워드: Resonant coupling

검색결과 268건 처리시간 0.024초

Wind tunnel investigation of correlation and coherence of wind loading on generic tall twin buildings in close proximity

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.443-456
    • /
    • 2014
  • A popular modern architectural form for tall buildings is two (or more) towers which are structurally linked through such features as a shared podium or sky-bridges. The fundamental features of the wind loading and the structural links of such buildings can be studied by measuring load components on the individual unlinked towers along with their correlations. This paper describes application of dual high frequency force balance (DHFFB) in a wind tunnel study of the base wind loading exerted on generic tall twin buildings in close proximity. Light models of two identical generic tall buildings of square plan were mounted on DHFFB and the base wind loading exerted on the buildings was simultaneously acquired. The effects of the relative positions of the buildings on the correlations and coherences involving loading components on each building and on the two buildings were investigated. For some relative positions, the effects of the building proximity on the wind loading were significant and the loading was markedly different from that exerted on single buildings. In addition, the correlations between the loadings on the two buildings were high. These effects have potential to significantly impact, for example, the modally-coupled resonant responses of the buildings to the aerodynamic excitations. The presented results were not meant to be recommended for direct application in wind resistant design of tall twin buildings. They were intended to show that wind loading on tall buildings in close proximity is significantly different from that on single buildings and that it can be conveniently mapped using DHFFB.

Rosen형 압전 변압기 구조를 적용한 자기-전기 복합체의 특성 (Characteristics of Magnetoelectric Composite with Rosen Type Piezoelectric Transducer Structure)

  • 박성훈;윤운하;;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.480-486
    • /
    • 2021
  • Magnetoelectric (ME) composite is composed of a piezoelectric material and a magnetostrictive material. Among various ME structures, 2-2 type layered ME composites are anticipated to be used as high-sensitivity magnetic field sensors and energy harvesting devices especially operating at its resonance modes. Rosen type piezoelectric transducer using piezoelectric material is known to amplify a small electrical input voltage to a large electrical output voltage. The output voltage of these Rosen type piezoelectric transducers can be further enhanced by modifying them into ME composite structures. Herein, we fabricated Rosen type ME composites by sandwiching Rosen type PMN-PZT single crystal between two Ni layers and studied their ME coupling. However, the voltage step-up ratio at the resonance frequency was found to be smaller than the value calculated with αME value. The ATILA FEA (Finite Elements Analysis) simulation results showed that the position of the nodal point was changed with the presence of a magnetostrictive layer. Thus, while designing a Rosen type ME composite with high performance in a resonant driving situation, it is necessary to optimize the position of the nodal point by optimizing the thickness or length of the magnetostrictive layer.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

Non-decaying 모드 해석을 이용해서 설계한 원통형 유전체 공진기 여파기의 최적 결합 방법에 대한 분석 (An Analysis in Optimum Coupling Method of Cylindrical Dielectric Resonator Filter Designed by Non-decaying Mode Analysis)

  • 이원희;박장원;김태신;허정;이상영
    • 대한전자공학회논문지TC
    • /
    • 제38권7호
    • /
    • pp.14-21
    • /
    • 2001
  • 본 논문에서는 유전체가 삽입된 공진기를 이용하여 C-band용 대역통과 여파기를 설계, 제작하였다. 공진기의 높이는 인접 유전체 공진기의 도파관 차단 주파수로부터 결정된다. 공진기의 지름은 도체 손실을 고려하여 유전체의 두 배로 결정하였다. 유전체 공진기의 공진주파수는 비소멸(non-decaying) 모드 해석법으로 계산하였다. 일반적으로 원통형 유전체 공진기의 공진주파수는 Cohn 모델로 해석하였는데, 이것은 공진기의 벽과 유전체벽 사이에서 전자파가 소멸(decaying)된다는 가정 하에 해석한 방법이다. 그러나, 이 방법은 근사적인 해석방법이다. 외부양호도(external quality factor)인 $Q_{ex}$는 Ansoft의 Maxwell 시뮬레이션 툴을 사용하여 결정하였다. 유전율 45인 유전체를 사용하여 설계한 대역통과 여파기는 5.065GHz의 중심주파수를 가졌다. 삽입손실은 1dB, 밴드 폭은 20MHz, 감쇠 특성은 30dB$(f_0{\pm}15MHz)$)로 설계목표에 만족함을 알 수 있다.

  • PDF

PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계 (PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter)

  • 부우충기엔;성세진
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3587-3593
    • /
    • 2009
  • 최근 태양광 시스템에서는 기존의 태양광 시스템을 계통과 전원으로 상호 접속하는 것에 대한 연구에 관심이 모아지고 있다. 단상, 삼상 시스템에 관계없이 태양광 시스템에서 태양광 인버터는 계통연계 동작에 중요한 역할을 하기 때문에 전체 시스템에서 핵심요소로 고려된다. 태양광 인버터를 제어하기 위해서는 부하 전류 조절이 핵심요소 중 하나이다. 일반적으로 태양광 인버터에서 이용되는 PI 제어기는 정상상태 오차와 왜란에 취약하다는 단점을 가지고 있기 때문에 실제 시스템에 완벽하게 적용하기에는 무리가 있다. 특히, 이는 고주파영역에서의 PI와 PR 제어기의 성능을 비교해보면 알 수 있다. 이 논문에서 제시된 PR 제어기는 무한 이득을 교류 기본파 성분에 넣을 수 있기 때문에 PR 제어기는 회전좌표계의 PI 제어기에서 사용되는 디커플링 기법과 복잡한 변환 없이 제로 정상상태오차에 도달할 수 있다. 그렇기 때문에 이 논문에서는 PI 제어기를 대체하는 이론적 분석을 통해 PR 제어기를 설계하였다. 논문에 제시되어 있는 이론을 바탕으로 한 PR 제어기를 고정 소수점 연산방식의 32비트 마이크로컨트롤러 DSP320F2812를 기반으로 한 3kW 프로토타입 태양광 인버터에 적용, 평가하였다. 또한 태양광 인버터의 제어 성능을 시뮬레이션과 실험결과를 통하여 보여주고 검증하였다.

부성 임피던스 변환기를 적용한 자기공명 방식 무선전력전송 시스템의 효율 개선 (Improvement of Power Transfer Efficiency Using Negative Impedance Converter for Wireless Power Transfer System with Magnetic Resonant Coupling)

  • 윤세화;김태형;박진관;김성태;윤기호;육종관
    • 한국전자파학회논문지
    • /
    • 제28권12호
    • /
    • pp.933-940
    • /
    • 2017
  • 본 논문에서는 부성 임피던스 변환기(Negative Impedance Converter: NIC)를 적용한 무선전력전송 시스템을 제안하였다. 차폐물질의 영향을 고려하여 전송 시스템을 구성하였다. 전송효율 개선을 위하여 부성 임피던스 변환기에서 발생한 부성저항을 적용하여 송신단의 Q 인자가 향상했다. NIC는 연산증폭기와 저항 소자로 구현하였으며, 특정 저항에 따른 부성저항 특성을 얻었다. 송신 코일의 크기는 $250mm{\times}250mm{\times}0.8mm$이며, 임피던스와 Q 인자는 각각 $31+j1874{\Omega}$, 60이다. 부성저항이 약 $30{\Omega}$일 때, 송신단의 저항이 감소하여 Q 인자는 약 900으로 증가했으며, 이는 기존 대비 약 15배 향상된 결과이다. 제안하는 시스템에 대하여 전송 효율을 측정하였으며, 기존 시스템과 비교하여 효율이 크게 향상되었다. 따라서 NIC의 효과로 전송 효율이 개선될 수 있는 것을 검증하였다.