DOI QR코드

DOI QR Code

Improvement of Power Transfer Efficiency Using Negative Impedance Converter for Wireless Power Transfer System with Magnetic Resonant Coupling

부성 임피던스 변환기를 적용한 자기공명 방식 무선전력전송 시스템의 효율 개선

  • Yoon, Se-Hwa (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Tae-Hyung (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Jin-Kwan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Seong-Tae (Amotech) ;
  • Yun, Gi-Ho (Department of Information and Communication Engineering, Sungkyul University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • 윤세화 (연세대학교 전기전자공학부) ;
  • 김태형 (연세대학교 전기전자공학부) ;
  • 박진관 (연세대학교 전기전자공학부) ;
  • 김성태 ((주)아모텍) ;
  • 윤기호 (성결대학교 정보통신공학부) ;
  • 육종관 (연세대학교 전기전자공학부)
  • Received : 2017.01.24
  • Accepted : 2017.11.10
  • Published : 2017.12.29

Abstract

A wireless power transfer system with a negative impedance converter(NIC) was designed and tested. The system was investigated to identify the effects of ferrites and conductors. To improve the power transfer efficiency(PTE), the Q-factor of the transmitter was enhanced by the negative resistance generated by the NIC. The NIC was composed of an Op-Amp and resistors. The negative resistance was obtained with respect to a resistor connected in a feedback loop. The dimension of the Tx coil was $250mm{\times}250mm{\times}0.8mm$. The impedance and Q-factor were $31+j1874{\Omega}$ and 60, respectively. The negative resistance was selected to be $30{\Omega}$, and the Q-factor was increased to 900 by reduction of the transmitter resistance, which was about 15 times higher than that of a conventional transmitter. The measured PTE was greatly improved in comparison to that of a conventional system. These results demonstrate that the PTE is enhanced by using the NIC.

본 논문에서는 부성 임피던스 변환기(Negative Impedance Converter: NIC)를 적용한 무선전력전송 시스템을 제안하였다. 차폐물질의 영향을 고려하여 전송 시스템을 구성하였다. 전송효율 개선을 위하여 부성 임피던스 변환기에서 발생한 부성저항을 적용하여 송신단의 Q 인자가 향상했다. NIC는 연산증폭기와 저항 소자로 구현하였으며, 특정 저항에 따른 부성저항 특성을 얻었다. 송신 코일의 크기는 $250mm{\times}250mm{\times}0.8mm$이며, 임피던스와 Q 인자는 각각 $31+j1874{\Omega}$, 60이다. 부성저항이 약 $30{\Omega}$일 때, 송신단의 저항이 감소하여 Q 인자는 약 900으로 증가했으며, 이는 기존 대비 약 15배 향상된 결과이다. 제안하는 시스템에 대하여 전송 효율을 측정하였으며, 기존 시스템과 비교하여 효율이 크게 향상되었다. 따라서 NIC의 효과로 전송 효율이 개선될 수 있는 것을 검증하였다.

Keywords

References

  1. 최재훈, "무선전력전송 기술 동향 및 자기공명방식 안테나 설계," 전자공학회지, 38(9), pp. 23-30, 2011년 9월.
  2. 김진욱, 지현호, 최연규, 윤영현, 김관호, 박영진, "자기공명 무선전력전송 시스템에서 공진 코일의 배열에 관한 연구," 한국전자파학회논문지, 21(6), pp. 564-572, 2010년 6월. https://doi.org/10.5515/KJKIEES.2010.21.6.564
  3. A. P. Sample, D. T. Meyer, S. Member, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046002
  4. M. Kiani, M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9, pp. 2065-2074, Sep. 2012. https://doi.org/10.1109/TCSI.2011.2180446
  5. L. Chen, S. Liu, Y. C. Zhou, and T. J. Cui, "An optimizable circuit structure for high-efficiency wireless power transfer," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 339-349, Jan. 2013. https://doi.org/10.1109/TIE.2011.2179275
  6. 강석현, 정창원, "자기공진형 무선전력전송 시스템의 소형화를 위한 공진기 설계," 한국전자파학회논문지, 27(2), pp. 163-169, 2016년 2월. https://doi.org/10.5515/KJKIEES.2016.27.2.163
  7. C.-C. Wu, H.-W. Chiu, D.-S. Lee, M.-H. Chang, C.-C. Lu, and C.-N. Chang, "High Q inductor design using modified magnetic substrate structure," in 2014 IEEE Wireless Power Transfer Conference, Jeju, 2014, pp. 284-287.
  8. 정인성, 최효상, "초전도 코일을 적용한 WPT 특성," 전기학회논문지, 62(6), pp. 762-766, 2013년 6월. https://doi.org/10.5370/KIEE.2013.62.6.762
  9. S. E. Sussman-Fort, R. M. Rudish, "Non-foster impedance matching of electrically-small antennas," IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2230-2241, Jun. 2009. https://doi.org/10.1109/TAP.2009.2024494
  10. A. De Marcellis, G. Ferri, and V. Stornelli, "NIC-based capacitance multipliers for low-frequency integrated active filter applications," in 2007 Ph.D Research in Microelectronics and Electronics Conference, vol. 3, Bordeaux, Jul. 2007, pp. 225-228.
  11. 양혜민, 김강욱, "네거티브 임피던스 변환기에 기반을 둔 저항성 V 다이폴 안테나의 논 포스터 임피던스 매칭," 한국전자파학회논문지, 26(7), pp. 597-605, 2015년 7월. https://doi.org/10.5515/KJKIEES.2015.26.7.597
  12. S. Yamanaka, K. Matsumoto, and Y. Horii, "Theoretical study on operational-amplifier-based negative impedance converters with symmetrically allocated impedance elements," in 2015 Asia-Pacific Microwave Conference, Nanjing, Dec. 2015, pp. 1-3.
  13. Y. Shen, T.-H. Chio, "Limitation of negative impedance converter using operational amplifier for matching electrically small antenna," in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Florida, 2013, pp. 1962-1963.
  14. A. Bodrov, S.-K. Sul, "Analysis of wireless power transfer by coupled mode theory (CMT) and practical considerations to increase power transfer efficiency," in Wireless Power Transfer-Principles and Engineering Explorations, 2012.
  15. J. E. Solomon, "The monolithic op amp: A tutorial study," IEEE Journal of Solid-State Circuits, vol. 9, no. 6, pp. 314-332, Dec. 1974. https://doi.org/10.1109/JSSC.1974.1050524
  16. 김태형, 김병현, 윤기호, 이웅용, 육종관, "도선 폭이 지수적으로 감소하는 무선전력전송용 코일 설계," 한국전자파학회 하계종합학술대회, 2016년.
  17. 김종찬, 이승우, 강병남, 홍익표, 조인귀, 김남, "WPT 시스템의 누설자계 감소를 위한 전자파 차폐구조 개선," 한국전자파학회논문지, 28(1), pp. 61-68, 2017년 1월. https://doi.org/10.5515/KJKIEES.2017.28.1.61
  18. S. Rajakaruna, F. Shahnia, and A. Ghosh, Plug in Electric Vehicles in Smart Grids, Springer, pp. 33-61, 2015.
  19. H. Hoang, F. Bien, "Maximizing efficiency of electromagnetic resonance wireless power transmission systems with adaptive circuits," in Wireless Power Transfer-Principles and Engineering Explorations, Intech, 2012.