• 제목/요약/키워드: Resonant Transmission

검색결과 235건 처리시간 0.024초

도체 평판에서 소형 개구의 투과 단면적 (Transmission Cross Section of the Small Aperture in an Infinite Conducting Plane)

  • 고지환;박순우;조영기
    • 한국전자파학회논문지
    • /
    • 제30권4호
    • /
    • pp.300-306
    • /
    • 2019
  • 얇은 도체 평판에 소형 리지 원형 개구, H-형태 개구, U-형태 개구, 예루살렘 십자형 개구와 같은 다양한 투과 공진 개구에 대하여 개구 모양에 무관하게 투과 단면적은 해석적으로 $2G{\lambda}^2/4{\pi}$로 주어지게 된다. 이러한 표현식에 대해 MOM 방법을 사용하여 계산한 결과와 비교하여 일치함을 확인하였다. 또한 두꺼운 도체 평판 내에 투과 공진기 구조에 대해 투과 단면적을 연구했으며, 투과 효율 관점에서 이들 두 소형 개구 구조 간에 동등함을 보였다.

공진 개구 구조의 소형화 및 투과 효율 개선 (Miniaturization and Transmission Efficiency Improvement of Resonant Aperture Structure)

  • 유종경;여준호;고지환;김병문;조영기
    • 한국전자파학회논문지
    • /
    • 제28권6호
    • /
    • pp.470-477
    • /
    • 2017
  • 무한 도체 평판에 위치한 파장에 비하여 작은 개구의 투과 효율을 향상시키는 방법으로써, 기존에 제안된 H-형태의 공진 개구를 변형하여 공진 주파수를 낮추어 파장 대비 개구의 크기를 소형화하고, 공진 개구의 투과 효율을 향상시켰다. 공진 개구를 등가 회로로 표현하여 계산된 최대 투과 단면적은 시뮬레이션을 통해 계산된 변형된 소형 공진 개구에서의 최대 투과 단면적과 일치함을 보이고, 최대 투과 단면적이 $2D{\lambda}/4{\pi}$의 정량적 수식으로 표현되어 투과 효율을 비교할 수 있다. 본 논문에서 제안한 변형된 공진 개구는 H-형태의 개구와 비교하여 최대 투과 단면적은 $846mm^2$에서 $2,431mm^2$으로 약 2.87배 증가되었으며, 공진 주파수는 5.06 GHz에서 2.92 GHz로 낮아져 개구의 길이 대 파장 비는 0.178에서 0.103으로 소형화되었다.

압전션트 회로를 이용한 지능패널의 광대역 소음저감에 관한 연구 (Broadband Noise Reduction of Smart Panels using Piezoelectric Shunt Circuits)

  • 정영채;김재환;이중근;하성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.624-629
    • /
    • 2003
  • In this paper, broadband shunt technique for increasing transmission loss is experimentally investigated. Piezoelectric shunt damping is studied using resonant shunt circuit and negative capacitor shunt circuit. A resonant shunt circuit is implemented by using a resistor and inductor. Negative Capacitor shunt damping is similar in nature to resonant shunt damping techniques, as a single piezoelectric material is used to dampen multi-mode. Performance of both methods is experimentally studied for noise reduction. This is based upon SAE J1400 test method and a transmission loss measurement system is provided for it. This paper will present the test setup fer transmission loss measurement and the tuning procedure of shunt circuits. Finally the results of sound transmission tests will be shown.

  • PDF

Double-Loop Coil Design for Wireless Power Transfer to Embedded Sensors on Spindles

  • Chen, Suiyu;Yang, Yongmin;Luo, Yanting
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.602-611
    • /
    • 2019
  • The major drawbacks of magnetic resonant coupled wireless power transfer (WPT) to the embedded sensors on spindles are transmission instability and low efficiency of the transmission. This paper proposes a novel double-loop coil design for wirelessly charging embedded sensors. Theoretical and finite-element analyses show that the proposed coil has good transmission performance. In addition, the power transmission capability of the double-loop coil can be improved by reducing the radius difference and width difference of the transmitter and receiver. It has been demonstrated by analysis and practical experiments that a magnetic resonant coupled WPT system using the double-loop coil can provide a stable and efficient power transmission to embedded sensors.

Development of New Conveyer Directly Driven by Contact-less Energy Transmission System

  • Park, Hyung-Beom;Park, Han-Seok;Woo, Kyung-Il
    • 조명전기설비학회논문지
    • /
    • 제23권3호
    • /
    • pp.18-23
    • /
    • 2009
  • This paper focuses on development of new conveyer directly driven by the contact-less energy transmission system. The effect of the resonant circuit and the flux linkage characteristics caused from that are analyzed by using 3D finite element analysis. From the result it is shown that the resonant circuit needs to transfer energy from the primary core to the secondary core. Also the influence of the linear induction motor on the contact-less energy transmission system is presented. New conveyer and the experimental apparatus was manufactured by using the contact-less energy transmission system and the linear induction motor. Possibility of realization of the conveyer is proved by comparison the simulation result which is obtained by using 2D finite element analysis with experimental one and the characteristic of the voltage and resonant current.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

자기유도방식과 LC공진을 이용한 무선전력전송기기 (Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant)

  • 이승환;김현민;김희제;김수원
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

H-모양 공진 개구를 이용한 평면 기판의 유전율 특성 분석 (Permittivity Characteristic Analysis of Planar Substrates Using H-shaped Resonant Aperture)

  • 여준호;이종익
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.55-56
    • /
    • 2018
  • 본 논문에서는 H-모양 공진 개구를 이용한 평면 기판의 유전율 특성 분석 방법을 제안하였다. 이를 위해 마이크로스트립 전송선로의 접지면에 H-모양 공진 개구를 추가하여 대역 저지 필터를 생성하였다. 마이크로스트립 전송선로의 접지면 뒤에 2 mm 두께의 평면 기판을 놓고 기판의 유전율 변화에 따른 공진주파수의 변화를 조사하였다. 기존의 상보 분할 링 공진기 구조를 사용하였을 때와 비교하여 기준 공진주파수에 대한 주파수의 변화 비가 커짐을 알 수 있었다.

  • PDF

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.