• Title/Summary/Keyword: Resonant Transmission

Search Result 236, Processing Time 0.028 seconds

Transmission Cross Section of the Small Aperture in an Infinite Conducting Plane (도체 평판에서 소형 개구의 투과 단면적)

  • Ko, Ji-Hwan;Park, Soon-Woo;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.300-306
    • /
    • 2019
  • Transmission cross section(TCS) is described analytically as $2G{\lambda}^2/4{\pi}$ irrespective of the aperture shapes for various transmission resonant apertures, such as small ridged circular or H-shaped, U-shaped, or Jerusalem cross-shaped apertures in an infinite thin conducting plane. The proposed expression is validated by comparison with the numerical results obtained from the method of moments(MOM). The TCS characteristics of the transmission resonant cavity structure in a thick conducting plane are also studied and the equivalence between the two small aperture structures is reported from the viewpoint of transmission efficiency.

Miniaturization and Transmission Efficiency Improvement of Resonant Aperture Structure (공진 개구 구조의 소형화 및 투과 효율 개선)

  • Yoo, Jong-Gyeong;Yeo, Junho;Ko, Ji-Whan;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • As a method of the transmission efficiency improvement of an aperture smaller than the wavelength, we modified the conventional H-shaped resonant aperture to lower the resonance frequency of resonant aperture, and the transmission efficiency of resonant aperture was improved more than the conventional aperture. The maximum transmission cross section(TCS) calculated using the equivalent circuit tends to be almost equal to the maximum TCS from the small resonant aperture modified to improve the transmission efficiency. The transmission characteristics of resonant apertures can be quantified as the TCS, and the transmission efficiency of that can be compared. The modified resonant aperture has a maximum TCS increased by about 2.87 times from $846mm^2$ to $2,431mm^2$ compared to the H-shaped aperture, and the resonant frequency decreased from 5.06 GHz to 2.92 GHz, and the length-to-wavelength ratio of the aperture was reduced from 0.178 to 0.103.

Broadband Noise Reduction of Smart Panels using Piezoelectric Shunt Circuits (압전션트 회로를 이용한 지능패널의 광대역 소음저감에 관한 연구)

  • 정영채;김재환;이중근;하성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.624-629
    • /
    • 2003
  • In this paper, broadband shunt technique for increasing transmission loss is experimentally investigated. Piezoelectric shunt damping is studied using resonant shunt circuit and negative capacitor shunt circuit. A resonant shunt circuit is implemented by using a resistor and inductor. Negative Capacitor shunt damping is similar in nature to resonant shunt damping techniques, as a single piezoelectric material is used to dampen multi-mode. Performance of both methods is experimentally studied for noise reduction. This is based upon SAE J1400 test method and a transmission loss measurement system is provided for it. This paper will present the test setup fer transmission loss measurement and the tuning procedure of shunt circuits. Finally the results of sound transmission tests will be shown.

  • PDF

Double-Loop Coil Design for Wireless Power Transfer to Embedded Sensors on Spindles

  • Chen, Suiyu;Yang, Yongmin;Luo, Yanting
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.602-611
    • /
    • 2019
  • The major drawbacks of magnetic resonant coupled wireless power transfer (WPT) to the embedded sensors on spindles are transmission instability and low efficiency of the transmission. This paper proposes a novel double-loop coil design for wirelessly charging embedded sensors. Theoretical and finite-element analyses show that the proposed coil has good transmission performance. In addition, the power transmission capability of the double-loop coil can be improved by reducing the radius difference and width difference of the transmitter and receiver. It has been demonstrated by analysis and practical experiments that a magnetic resonant coupled WPT system using the double-loop coil can provide a stable and efficient power transmission to embedded sensors.

Development of New Conveyer Directly Driven by Contact-less Energy Transmission System

  • Park, Hyung-Beom;Park, Han-Seok;Woo, Kyung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.3
    • /
    • pp.18-23
    • /
    • 2009
  • This paper focuses on development of new conveyer directly driven by the contact-less energy transmission system. The effect of the resonant circuit and the flux linkage characteristics caused from that are analyzed by using 3D finite element analysis. From the result it is shown that the resonant circuit needs to transfer energy from the primary core to the secondary core. Also the influence of the linear induction motor on the contact-less energy transmission system is presented. New conveyer and the experimental apparatus was manufactured by using the contact-less energy transmission system and the linear induction motor. Possibility of realization of the conveyer is proved by comparison the simulation result which is obtained by using 2D finite element analysis with experimental one and the characteristic of the voltage and resonant current.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant (자기유도방식과 LC공진을 이용한 무선전력전송기기)

  • Lee, Seung-Hwan;Kimm, Hyoen-Min;Kim, Hee-Je;Kim, Su-Weon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

Permittivity Characteristic Analysis of Planar Substrates Using H-shaped Resonant Aperture (H-모양 공진 개구를 이용한 평면 기판의 유전율 특성 분석)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.55-56
    • /
    • 2018
  • In this paper, a method for analyzing the dielectric constant of a planar substrate is proposed. To this end, a band-stop filter was created by adding a H-shaped resonant aperture to the ground plane of a microstrip transmission line. A planar substrate of 2 mm thickness was placed behind the ground plane of the microstrip transmission line and the change of the resonant frequency with the change of the dielectric constant of the substrate was investigated. It can be seen that the change ratio of the frequency to the reference resonant frequency is larger than that of the conventional complementary split ring resonator structure.

  • PDF

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.