• Title/Summary/Keyword: Resonant Sensors

Search Result 110, Processing Time 0.022 seconds

A study on the technology applying the acoustic wave measurement to diagnosing particles in GIS [II] (GIS 이물진단을 위한 초음파 측정 적용기술연구(II))

  • Choi, J.G.;Kim, I.K.;Kim, M.G.;Kim, I.S.;Kim, K.H.;Yoon, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1646-1648
    • /
    • 2001
  • This paper described the outputs of acoustic sensors due to the vibration of particles in the mock up GIS. We used the two type of acoustic sensors which had 150kHz resonant frequency and 60kHz resonant frequency respectively. In the experiment of the mock up GIS, we paid attention to the magnitude and attenuation of sensor outputs due to particles. In this results the output of each sensor in frequency characteristic depended on the material of GIS tank and the output of sensor in magnitude characteristics depended on the size of particles and dropping height.

  • PDF

Wave Simulation Technique for Large-scale Optical Sensor Designs (거대 스케일 광학 센서 설계를 위한 파동 시뮬레이션(Wave Simulation) 기법 연구)

  • Yong-Hoon Lee;Tae Yoon Kwon;Muhan Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-65
    • /
    • 2023
  • The wave mode calculation of a large-scale optical system in comparison to the working wavelength is practically impossible because the computational cost increases exponentially. In this paper, we propose a method that can obtain the optical mode in a large-scale optical system. The method carries out simulations by dividing the calculation area into blocks and moving along the light axis along which the light propagates. By applying this method to the calculation of resonant modes in a ring-type optical resonator, which is mainly used for ring laser optical gyro sensors, the efficiency of the proposed method was verified.

Polyimide Film-coated Side-polished Optical Fiber Humidity Sensor (폴리이미드가 코팅된 측면 연마 광섬유를 이용한 습도 센서)

  • Kwang Taek Kim;Jae Chang Yang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-54
    • /
    • 2023
  • We investigated a humidity sensor based on a polyimide-coated side-polished optical fiber. The polyimide film absorbed moisture, causing the resonant wavelength of the sensor to shift to a longer wavelength owing to the changes in the optical properties of the film. The experimental results showed that the resonant wavelength of the device shifted by 17-18 nm when relative humidity changed from 30% to 90%.

A Study on the Technology to Diagnose GIS with Acoustic Emission by Dropping Particles Method (이물 낙하법에 의한 GIS 초음파 진단 기술 연구)

  • Kim, Gwang-Hwa;Choe, Jae-Gu;Seon, Jong-Ho;Kim, Ik-Su;Yun, Jin-Yeol;Park, Gi-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.246-252
    • /
    • 2002
  • This paper describes the acoustic emission measurement method to diagnose GIS for particles. We measured and analyzed the signals of acoustic waves using acoustic two types sensors with 125KHz and 50KHz resonant frequency respectively when the particles were dropped on the surfaces of circular plates and inside of GlS tanks. We found that the difference between peak outputs of two sensors depended on the types and materials of particles and the conditions of dropping position. These results showed that the outputs of 125KHz sensor were higher than those of 50KHz sensor in circular plate and 362㎸ GIS tank made of steel and vice versa in circular plate and 800㎸ GIS tank made of aluminum. The ratios outputs of 125KHz sensor to those of 50KHz sensor were 1.4 - 2.37 in 800㎸ GIS tank and were 0.5 - 1.0 in 362㎸ GIS tank. Therefore we knew that adaption of two types acoustic sensors which had different resonant frequencies as a very useful method in diagnosis of GIS.

Development and Characterization of High-Performance Acoustic Emission Sensors (음향방출 신호의 검출을 위한 공진형 및 광대역 센서 제작과 특성평가)

  • Kim, B.G.;Kim, Y.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.9-17
    • /
    • 1993
  • Three types of piezoelectric sensors to detect acoustic emission signals were developed and characterized. Epicentral displacement and velocity of a plate to have infinite boundary were calculated by convolution between a Green's function and a simulated source time function to show parabolic rising characteristic. The sensor calibration system set up was composed of a steel plate, a glass capillary, an indentor and a load cell indicator The transient elastic signals were detected by the sensors. The results were compared with the theoretical results and Fast Fourier Transformed. As the results, the sensor fabricated using a disk shape of a piezoelectric PZT element showed resonant characteristics. The sensors fabricated using a conical shape PZT element and a PVDF polymer film showed the wide band characteristics for particle displacement and velocity, respectively. The calculated results showed good agreements with the transient responses in the cases of the wide band sensors and it was confirmed that the simulated source time function had been properly assumed.

  • PDF

Novel Long-period Fiber Grating devices for Monitoring the Deformation of Ship Hull (선체의 변형을 감지하기 위한 새로운 형태의 장주기 광섬유 격자 소자)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • We have developed novel optical-fiber sensors based on strain-induced long-period fiber gratings for monitoring the deformation of a hull. They have no external pressure for sustaining the mechanical formed gratings. The pressure, which provides a force to form the periodic grating along the single mode fiber, was realized by the bonding strength of a photopolymer. To reduce the polarization dependency of the sensors caused by the asymmetry structure of gratings, a Faraday Rotator Mirror (FRM) was utilized in this experiment. We have realized the polarization-insensitive function of the proposed sensors. The change of an external strain are measured by an optical spectrum analyzer. When the external stain increases. the attenuation at the resonant wavelength decreases and the loss peak was slightly shifted to the shorter wavelength.

Characteristics of Piezoceramics Sensors for Vibration Detection

  • Tan, A.C.C.;Dunbabin, M.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2004
  • Early detection of an internal malfunction of machinery plays a very important part in all condition monitoring programs. Sensors to detect amplitude. velocity and acceleration are widely used in vibration detection and control. Piezoceramic materials are largely used in sensors and actuators for vibration monitoring and control due to their relatively large output from an induced strain and their arguable self powering characteristics. In this paper a cheap and yet reliable sensors/actuators were developed to detect vibration. The results show that low cost PZT can be designed for optimum detection of bearing vibration. This paper presents the experimental results of a number of piezoceramics characteristics in terms of resonant frequencies and variation of PZT constants with temperature.

Fabrication and Characterization of Electrostatically Actuated Microcantilever Mass Sensors (정전기력으로 구동되는 마이크로 캔틸레버 질량 센서의 제작과 특성)

  • Lee, Jung-Chul;Choi, Bum-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Microcantilevers have been actively used in probe-based microscopy and gravimetric sensing for biological or chemical analytes. To integrate actuation or detection schemes in the structure, typical fabrication processes include several photolithographic steps along with conventional MEMS fabrication. In this paper, a simple and straightforward way to fabricate and operate silicon microcantilever mass sensors is presented. The fabricated microcantilever sensors which can be electrostatically actuated require only two photolithographic steps. Resonant characteristics of fabricated microcantilevers are measured with a custom optical-lever and results show size-dependent quality factors. Using a $40\;{\mu}m$ long, $7\;{\mu}m$ wide, and $3\;{\mu}m$ thick cantilever, we achieved subfemtogram mass resolution in a 1 Hz bandwidth.

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

Improvement of Bonding Strength Uniformity in Silicon-on-glass Process by Anchor Design (Silicon-on-glass 공정에서 접합력 균일도 향상을 위한 고정단 설계)

  • Park, Usung;An, Jun Eon;Yoon, Sungjin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.423-427
    • /
    • 2017
  • In this paper, an anchor design that improves bonding strength uniformity in the silicon-on-glass (SOG) process is presented. The SOG process is widely used in conjunction with electrode-patterned glass substrates as a standard fabrication process for forming high-aspect-ratio movable silicon microstructures in various types of sensors, including inertial and resonant sensors. In the proposed anchor design, a trench separates the silicon-bonded area and the electrode contact area to prevent irregular bonding caused by the protrusion of the electrode layer beyond the glass surface. This technique can be conveniently adopted to almost all devices fabricated by the SOG process without the necessity of additional processes.