• 제목/요약/키워드: Resonant Response

검색결과 289건 처리시간 0.028초

고분자 감응성 LB막의 유변학적인 특성분석에 의한 유기가스의 식별 (The Identification of Organic Vapours Using the Rheological Characteristic Analysis of Polymeric Sensitive LB Films)

  • 강현욱;김정명;장상목;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 1996
  • The rheological changes in sensitive materials was investigated by using QCA. Langmuir-Blodgett method was used to transfer sensitive material to the quartz crystals because of its facility to control the thickness. To develop gas sensor using quartz crystal, the rheological change of sensitive LB films were observed using the resonant resistance concept. And the rheological changes as to adsorption of organic vapours were used to analyze the response mechanism between organic vapours and sensitive LB films. We considered with resonant frequency of quartz crystal to obtain one-channel gas sensor and analytical tools of organic vapours response. In our results, we analyzed the organic vapours response by the rheological changes and mass loading as to adsorption of organic vapours.

  • PDF

The dynamic response of FG cylindrical beam subjected to bending and the centrifugal force of rotation on the basis of modified size-dependent high-order theories

  • Jun Xiang;Mengran Xu
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.47-61
    • /
    • 2023
  • This paper examines the dynamic response of rotating nanodevices under the external harmonic load. The spinning nanosystem is made of nanoscale tubes that rotate around the central nanomotor and is mathematically modeled via high-order beam theory as well as nonclassical nonlocal theory for the size impact. According to the Hamilton principle, the dynamic motion equations are derived, then the time-dependent results are obtained using the Newmark Beta technique along with the generalized differential quadratic method. The presented results are discussed dynamic deflection, resonant frequency, and natural frequency in response to the different applicable parameters, which help develop and produce nanoelectromechanical systems (NEMS) for various applications.

공진어드미턴스를 이용한 유기가스의 흡착패턴의 분석 (Analysis of Adsorption Pattern of Orgnaic Gas Using Resonant Admittance Method)

  • 김정명;최용성;장정수;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1565-1568
    • /
    • 1996
  • The adsorption and desorption behavior of orgnaic gases were investigated using the resonant frequency and admittance method. Sensitive material were depositied on the quartz crystal microbalence by using Langmuir-Blodgett method. To investigate the response characteristics of organic gases, Resonant frequency-Resonant admittance (F-A) diagram was used. The quantity and quality information about organic gases can be obtained by that diagram. As a results, when the organic gases were adsorpted into sensitive material, the physical property changees of sensitive material were occured.

  • PDF

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Dynamic response of transmission line conductors under downburst and synoptic winds

  • Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제21권2호
    • /
    • pp.241-272
    • /
    • 2015
  • In the current study, dynamic and quasi-static analyses were performed to investigate the response of multiple-spanned and single-spanned transmission line conductors under both downburst and synoptic winds considering different wind velocities and different length spans. Two critical downburst configurations, recommended in the literature and expected to cause maximum conductor reactions, were considered in the analyses. The objective of the study was to assess the importance of including the dynamic effect when predicting the conductor's reactions on the towers. This was achieved by calculating the mean, the background and the resonant reaction components, and evaluating the contribution of the resonant component to the peak reaction. The results show that the maximum contribution of the resonant component is generally low (in the order of 6%) for the multiple-spanned system at different wind velocities for both downburst and synoptic winds. For the single-spanned system, the result show a relatively high maximum contribution (in the order of 16%) at low wind velocity and a low maximum contribution (in the order of 6%) at high wind velocity for both downburst and synoptic winds. Such contributions may justify the usage of the quasi-static approach for analyzing transmission line conductors subjected to the high wind velocities typically used for the line design.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구 (Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger)

  • 최영준;최시영;김래영
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.

Design of Capacitive Power Transfer Using a Class-E Resonant Inverter

  • Yusop, Yusmarnita;Saat, Shakir;Nguang, Sing Kiong;Husin, Huzaimah;Ghani, Zamre
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1678-1688
    • /
    • 2016
  • This paper presents a capacitive power transfer (CPT) system using a Class-E resonant inverter. A Class-E resonant inverter is chosen because of its ability to perform DC-to-AC inversion efficiently while significantly reducing switching losses. The proposed CPT system consists of an efficient Class-E resonant inverter and capacitive coupling formed by two flat rectangular transmitter and receiver plates. To understand CPT behavior, we study the effects of various coupling distances on output power performance. The proposed design is verified through lab experiments with a nominal operating frequency of 1 MHz and 0.25 mm coupling gap. An efficiency of 96.3% is achieved. A simple frequency tracking unit is also proposed to tune the operating frequency in response to changes in the coupling gap. With this resonant frequency tracking unit, the efficiency of the proposed CPT system can be maintained within 96.3%-91% for the coupling gap range of 0.25-2 mm.

A Current-Fed Parallel Resonant Push-Pull Inverter with a New Cascaded Coil Flux Control for Induction Heating Applications

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi;Milimonfare, Jafar
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.632-638
    • /
    • 2011
  • This paper presents a cascaded coil flux control based on a Current Source Parallel Resonant Push-Pull Inverter (CSPRPI) for Induction Heating (IH) applications. The most important problems associated with current source parallel resonant inverters are start-up problems and the variable response of IH systems under load variations. This paper proposes a simple cascaded control method to increase an IH system's robustness to load variations. The proposed IH has been analyzed in both the steady state and the transient state. Based on this method, the resonant frequency is tracked using Phase Locked Loop (PLL) circuits using a Multiplier Phase Detector (MPD) to achieve ZVS under the transient condition. A laboratory prototype was built with an operating frequency of 57-59 kHz and a rated power of 300 W. Simulation and experimental results verify the validity of the proposed power control method and the PLL dynamics.

Free vibration and harmonic response of cracked frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.33-54
    • /
    • 2020
  • The aim of this study is to calculate natural frequencies and harmonic responses of cracked frames with general boundary conditions by using transfer matrix method (TMM). The TMM is a straightforward technique to obtain harmonic responses and natural frequencies of frame structures as the method is based on constructing a relationship between state vectors of two ends of structure by a chain multiplication procedure. A single variable shear deformation theory (SVSDT) is applied, as well as, Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT) for comparison purposes. Firstly, free vibration analysis of intact and cracked frames are performed for different crack ratios using TMM. The crack is modelled by means of a linear rotational spring that divides frame members into segments. The results are verified by experimental data and finite element method (FEM) solutions. The harmonic response curves that represent resonant and anti-resonant frequencies directly are plotted for various crack lengths. It is seen that the TMM can be used effectively for harmonic response analysis of cracked frames as well as natural frequencies calculation. The results imply that the SVSDT is an efficient alternative for investigation of cracked frame vibrations especially with thick frame members. Moreover, EBT results can easily be obtained by ignoring shear deformation related terms from governing equation of motion of SVSDT.