• Title/Summary/Keyword: Resonant Modes

Search Result 248, Processing Time 0.029 seconds

Wind-induced responses of Beijing National Stadium

  • Yang, Q.S.;Tian, Y.J.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • The wind-induced mean, background and resonant responses of Beijing National Stadium are investigated in this paper. Based on the concepts of potential and kinetic energies, the mode participation factors for the background and the resonant components are presented and the dominant modes are identified. The coupling effect between different modes of the resonant response and the coupling effect between the background and resonant responses are analyzed. The coupling effects between the background and resonant components and between different modes are found all negligible. The mean response is approximately analogous to the peak responses induced by the fluctuating wind. The background responses are significant in the fluctuating responses and it is much larger than the resonant responses at the measurement locations.

A New Half-bridge Resonant Inverter with Load-Freewheeling Modes

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.249-256
    • /
    • 2007
  • This paper presents a new circuit topology and its digital control scheme for a half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in load-freewheeling modes, the pulse-width modulation (PWM) method can be used for the output power control. The proposed half-bridge inverter is based on the resonant frequency-tracking algorithm with the goal of maintaining the unity of the output displacement factor of the load impedance even in varying conditions. In this paper, the operation principle, electrical characteristics, and detailed digital control scheme of the proposed half-bridge resonant inverter are described. The experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge inverter are presented and discussed.

Expansion of Operating Mode of 3-Phase Quasi-Resonant DC Link Inverter (3-Phase Quasi-Resonant Inverter의 동작모드 확장)

  • Yang, S.B.;Lee, J.W.;Park, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.267-271
    • /
    • 1990
  • This paper describes a 3-Phase Quasi-Resonant DC Link Inverter (3-phase QRI), which has two operating modes, ie. inverting mode and rectifying mode. First the 3-Phase QRI is simplified and the resonant circuit is analyzed in comparison with two resonant DC-to-DC converters. This analysis shows that the maximum voltage of resonant capacitor is limited to twice the input voltage irrespective of operating modes. A new simple control method in rectifying mode is suggested, which does not require any other element in power circuit. The characteristic of 3-Phase Quasi Resonant Inverter has been verified by simulation using the proposed control method.

  • PDF

Design of a Dual-Band Bandpass Filter Using an Open-Loop Resonator

  • Im, Hyun-Seo;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.197-201
    • /
    • 2017
  • In this paper, we present a novel design for a dual-band bandpass filter (BPF) based on the conventional second-order, open-loop BPF. By adding series resonant circuits to the open ends of the resonator, we can create two resonant modes from the even and odd modes. One pair of the even and odd modes constitutes the upper passband, while the other pair constitutes the lower passband. By adding another series resonant circuit to the open-loop resonator, we can control the bandwidth of either the upper passband or the lower passband. We can replace the series resonant circuits with simple microstrip line resonators. A dual-band BPF working at both Wi-Fi bands (2.4 GHz and 5.8 GHz bands) is designed based on the proposed method and is tested. The measured and simulated results show excellent agreement.

Dispersion Analysis of Higher-Order Modes for Planar Transmission Lines Using the 2-Dimensional Finite-Difference Time-Domain Method (2차원 유한차분-시간영역 방법을 이용한 평면형 전송선로의 고차 모드 분산 특성 해석)

  • 전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.847-854
    • /
    • 1999
  • In this paper, we have analysed frequency-dispersion characteristics of higher-order modes for uniform planar transmission lines, using the 2-dimensional finite-difference time-domain method. The method presented in this paper uses both informations of amplitude and phase of the electromagnetic spectrum to determine resonant frequencies, while methods previously reported use the magnitude only. This algorithm is very useful when a resonant mode has a relatively small magnitude, where the identification of the resonant mode is quite difficult. Numerical results show that a strip line supports few higher-order modes within the frequency range of 20 GHz, but there occur many higher-order modes in the structure of grounded coplanar waveguide, where resonant frequencies of the first higher-order mode is very close to those of the fundamental mode and there occur lots of very adjacent higher-order modes. As in this example, for the analysis of planar transmission lines which support many resonant modes very close each other, the method presented in this paper can be applied very efficiently.

  • PDF

Comparative Analysis of Charging Modes of Series Resonant Converter for an Energy Storage Capacitor (에너지저장 커패시터의 최적 충전을 위한 직렬공진형 컨버터의 운용 모드 비교)

  • Lee, Byung-Ha;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2012
  • In this paper, charging modes of series resonant converter for a high voltage energy storage capacitor are compared in terms of charging time, peak resonant current, normalized peak resonant current and voltage in each operation mode. Operating principles of the full bridge series resonant converter with capacitor load are explained and analyzed in discontinuous and continuous operation mode. Based on the analysis and simulation result, $0.6{\omega}_r$ < ${\omega}_s$ < $0.75{\omega}_r$ and $1.3{\omega}_r$ < ${\omega}_s$ < $1.4{\omega}_r$ are evaluated to the best range of switching frequency for charging of an high voltage energy storage capacitor. 1.8 kJ/s SRC prototype is assembled with TI 28335 DSP controller and 40 kJ, 7 kV energy storage capacitor. Design rules based on the comparative analysis are verified by experiment.

A New Resonant H/B Inverter Having Load Freewheeling Modes (부한 환류모드를 갖는 새로운 반 브리지 공진형인버터)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Oh, Won-Seok;Kim, Hee-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.153-156
    • /
    • 2004
  • This paper presents a new circuit topology of the half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in the load freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter should keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, electrical characteristics, and losses analysis of the proposed half-bridge resonant inverter are described. Simulation and experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

  • PDF

Suppression of Parallel Plate Modes Using Edge-Located EBG Structure in High-Speed Power Bus

  • Cho, Jonghyun;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.252-257
    • /
    • 2016
  • An edge-located electromagnetic bandgap (EL-EBG) structure using a defected ground structure (DGS) is proposed to suppress resonant modes induced by edge excitation in a two-dimensional planar parallel plate waveguide (PPW). The proposed EL-DGS-EBG PPW significantly mitigates multiple transverse-magnetic (TM) modes in a wideband frequency range corresponding to an EBG stopband. To verify the wideband suppression, test vehicles of a conventional PPW, a PPW with a mushroom-type EBG structure, and an EL-DGS-EBG PPW are fabricated using a commercial process involving printed circuit boards (PCBs). Measurements of the input impedances show that multiple resonant modes of the previous PPWs are significantly excited through an input port located at a PPW edge. In contrast, resonant modes in the EL-DGS-EBG PPW are substantially suppressed over the frequency range of 0.5 GHz to 2 GHz. In addition, we have experimentally demonstrated that the EL-DGS-EBG PPW reduces the radiated emission from -24 dB to -44 dB as compared to the conventional PPW.

High-Efficiency DC-DC Converter using the Multi-Resonant-Circuit (다중공진회로를 이용한 고효율 DC-DC 컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.218-228
    • /
    • 2021
  • This paper presents the high-efficiency DC-DC converter using the multi-resonant-circuit. The proposed converter has the power topology of half-bridge and utilizes the multi-resonant-circuit that is composed of 2 inductors (LL) and 1 capacitor (C) to achieve high-efficiency. The multi-resonant-circuit forms each resonant circuit of series circuit type with each resonant frequency, according to the operation modes. This paper first describes the operation pirinciples of proposed converter by the operation modes and steady-state fundamental approximation modelling. Then it shows a design example of the proposed converter based on the principles. And it is validated that the proposed converter has the operation characteristics of high-efficiency DC-DC power conversion through the experimental results of prototype converter implemented by the designed circuit parameters.

Numerical Analysis of Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator (음향공명기가 장착된 가스터빈 연소실의 음향장 해석)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1110-1115
    • /
    • 2004
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

  • PDF