• Title/Summary/Keyword: Resonance tube

Search Result 151, Processing Time 0.041 seconds

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Development of inside-out probes for both Nuclear Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy (핵자기공명 영상법과 핵자기공명 분광법을 위한 뒤집음-탐침의 개발에 대한 연구)

  • Lee, Dong-Hun;Go, Rak-Gil;Jeong, Eun-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.309-316
    • /
    • 1995
  • RF (radio-frequency) probes of Nuclear Magnetic Resonance are one of the important factors and should be designed and built properly depending upon the geometry of the samples and the information. In general there are two kinds of rf probes : one encircles the sample while the other is placed on the surface of the sample. However, in case that the samples on human internal organs have a tube shape, the two kinds of rf probes, as specified above, are usually unsuitable for the internal imaging due to the degradation of signal-to-noise ratios (SNR's). In this case a probe should be positioned as close to the area as possible by putting the probe in the tubelike sample to improve filling factor In the present study inside-out probes have been constructed in the three different shapes such as an anti-solenoidal, a saddle and a dual surface types. RF-field distributions have also been calculated depending upon the geometrical changes of anti-solenoid probes. Moreover, the performance of the inside-out probes has been checked by measuring SNR's of the images acquired. The inside-out probes constructed in this study produced better SWR's and rf-field uniformity in the area close to the probes in comparing with any other commercial probes. There is a high feasibility that the constructed probes in the present study are applicable to the diagnosis of human bodies.

  • PDF

Development of Ultrasonic Testing Method for Evaluation of Adhesive Layer of Blaster Tube (토출관 접합계면 평가를 위한 초음파 시험법 개발)

  • Kim, Y.H.;Song, S.J.;Park, J.S.;Cho, H.;Lim, S.Y.;Yun, N.G.;Park, Y.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 2004
  • Ultrasonic testing method has been developed to evaluate flaw of adhesive layers in blast tube for the reliability of the rocket nozzle. The ultrasonic reflection from the interface between the steel sheet and the epoxy adhesive is measured with a high-frequency Pulse-echo setup in order to identify contact debonding and missing adhesive in epoxy layer between steel and FRP layers. The steel sheet is resonated by low-frequency ultrasound, and the gap size underneath the measuring location is estimated from the resonance responses. For practical application in industry an automated testing system has been developed where the proposed approach is implemented. The performance of the proposed approach has been verified by actual measurement of gap sizes from the cross-sections of cut specimens using an optical microscope.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Analysis of Microphonic Phenomenon for Shadow Mask in Flat TV by FEM (유한요소법에 의한 평면 TV 새도우마스크의 마이크로포닉 현상 해석)

  • Kim, Jung;Park, Soog-Kil;Kang, Bum-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.89-95
    • /
    • 2002
  • A shadow mask inside the Braun tube of a TV is sustained by springs attached to the glass panel, its vibration cause the picture image to discolor, which is called the microphonic phenomenon. It is found that it results from resonance when the natural frequency of the shadow mask coincides with that of built-in speaker sound. This paper describes experimental and analytical investigations by using FEM on the vibration problem of the shadow mask assembly. The simulation scheme may be efficiently used to develop a new design for a large-screen flat TV.

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

Electronic Ballast Design for Ceramic MHL by using Its Conductance Model (세라믹 MHL의 컨덕턴스 모델을 이용한 전자식 안정기 설계)

  • Park, Chong-Yeon;Shin, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.117-122
    • /
    • 2008
  • This paper presents the conductance model at high frequency of the Ceramic Metal Halide Lamp and the designing method of the electronic ballast with the LCC resonant tank type by using that model. Conductance model is based on a physical phenomenon in the discharge tube of the lamp and model constants of conductance model are obtained by Least Squares Method. After equivalent impedances are determined by the conductance model, The LCC resonance tank is designed by using the equation of the lamp power. Simulation result using PSpice software and experimental results show that the conductance model in this paper is very useful to design the electronic ballast at high frequency for the Ceramic Metal Halide Lamps.

  • PDF

A Study on the High-frequency Operation Characteristics of the High-pressure Sodium Lamps (고압 나트륨램프의 고주파 방전특성 연구)

  • Chee, Chol-Kon;Kim, Hoon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.495-502
    • /
    • 1986
  • The change of the discharge characteristics of the high-pressure sodium (HPS) lamps is investigated over a power source frequency range of 60 Hz to 30, 000 Hz. As the frequency increases, the light and electrical characteristics of the HPS lamps are improved since the re-ignition is not needed due to the constant electron density, and the cathode fall is reduced. But at the certain frequency range, the arc instability called acoustic resonance occurs, and the arc tube is damaged. Regarding these characteristics and the kind of the illuminating system, a proper frequency is selected to operate the HPS lamps. And a new measuring system using a computer and the storage-scope is developed to avoid the error of the ordinary gauges at high frequency power.

  • PDF

A Study on Electronic Ballast for Metal Halide Lamps with Adaptive Ignition

  • Jo, Gye-Hyun;Song, Myoung-Suk;Park, Chong--Yeun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.24-28
    • /
    • 2004
  • Metal halide lamps have been made suitable for use in outdoor illumination systems over many years. They are also widely used in application and commercial lighting due to their attracting properties such as good quality color, rendering and high efficiency. Over the past few years, a considerable number of studies have been conducted on the electronic ballast with hot restarting and resonance phenomenon. However, very few attempts have been made at the adaptive ignition method according to lamp state. This paper proposes an electronic ballast for metal halide lamps with an igniter for adaptive ignition. The proposed electronic ballast can generate different ignition voltages according to the arc tube state. The experimental results showed that the proposed ballast circuit using adaptive igniter is suitable for 70W HQI lamps.

소아의 경직장 영상을 위한 two-turn 표면형 코일과 안장 코일의 비교

  • 김은주;김민정;김대홍;서진석;김명준;김동익;정은기
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.146-146
    • /
    • 2001
  • 목적: 해상도가 우수한 경직장 영상을 위한 소아용 two-turn 표면형 수신 코일, 안장 수신 코일을 제작하여 이를 이용하여 얻은 고양이의 경직장 영상을 비교한다. 대상 및 방법: 지금까지 소아의 경직장 영상은 주로 초음파를 이용하여 얻었으나 해상도가 떨어지며 아직까지 소아용 탐촉자는 개발되지 않았다. 소아의 항문직장 기형의 진단을 위해서는 해상도가 우수한 영상이 필요하고, 이를 위해 소아용 직장 RF 코일로 원주형 two-turn 표면형 코일, 안장 코일을 제작하였다. 크기는 직경 7mm, 길이 6cm와, 직경 10mm, 길이 l0cm 하였고, 코일의 구리선 바깥으로는 두께 1mm의 테프론 tube로 감쌌다. 균일한 시험 시료(phantom)로 마요네즈를 이용하여 T1 강조 영상(Spin echo TR/TE= 500/11 msec, FOV=12cm, 영상행렬 256$\times$256)을 얻어서 신호 강도의 profile을 얻는다. 이를 Mathematica를 이용하여 구한 RF 자기장 세기의 분포와 비교했다. 두 종류의 코일을 각각 사용하여 얻은 고양이 항문 괄약근 영상에서 외부 괄약근, 내부 괄약근 등을 구분, 비교하였다.

  • PDF