• Title/Summary/Keyword: Resonance peak

Search Result 446, Processing Time 0.032 seconds

A Transfer Function Synthesis for Model Approximation with Resonance Peak Value (첨두공진점을 갖는 모델 근사화를 위한 전달함수 합성법)

  • Kim, Jong-Gun;Kim, Ju-Sik;Kim, Hong-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • This paper proposes a frequency transfer function synthesis for approximating a high-order model with resonance to a low-order model in the frequency domain. The presented model approximation method is based on minimizing the error function weighted by the numerator polynomial of approximated models, which is used of the RLS(Recursive Least Square) technique to estimate the coefficient vector of approximated models. The proposed method provides better fitting in a low frequency and peak resonance. And an example is given to illustrate feasibilities of the suggested schemes.

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

Ferromagnetic Resonance Study of an YIG Thin Film Grown by LPE Method (LPE법으로 제조한 YIG 박막에 대한 강자성공명 연구)

  • 이수형;염태호;윤달호;김약연;한기평;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 1999
  • The ferromagnetic resonance study of the magnetostatic wave modes for an YIG thin film, grown by a liquid phase epitaxy method, was performed by an FMR spectrometer at room temperature. The magnetostatic surface wave and backward volume wave modes show periodic excitations in parallel configuration, whereas the complex spectra were observed in perpendicular configuration. The resonance spectra in parallel configuration can be well explained by the Walker and Damon-Eshbach theory. The peak-peak line width of uniform mode was 0.4 Oe. The saturation magnetization $M_s$ of the YIG thin film was calculated as 137 emu/㎤. In order to know the dependence of the magnetostatic modes as a function of the saturation magnetization and the thickness, the (1,1) and (3,1) modes of the magnetostatic backward volume wave were compared and theoretically calculated.

  • PDF

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Microwave Dielectric Properties and Microstructure of $BiNbO_4$ Ceramics ($BiNbO_4$세라믹스의 유전 특성과 미세구조에 관한 연구)

  • 고상기;김현학;김경용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.208-213
    • /
    • 1998
  • Microwave dielectric properties of $BiNbO_4$ containing CuO and $V_2O_5$(BN ceramics). BN ceramic with 0.07wt% $V_2O_5$ and 0.03wt% CuO (BNC3V7) was sintered at $900^{\circ}C$ where it is possible for these to be co-fired with Ag electrode. The dielectric constant of 44.3, TCF (Temperature Coefficient of resonance Frequency) of 2 ppm/$^{\circ}$ and Q${\times}f_o$ value (product of Quality value and resonance Frequency) of 22,000GHz could be obtained from those ceramics. It is observed that orthorhombic structure was stable $1000^{\circ}C$. As sintering temperature increases, the dielectric properties decreased. The main reasons were abnormal grain growth and the main peak of triclinic moved from the main peak of orthorhombic.

  • PDF

An influence of the exchange rate on NOE intensities of a ligand: Application to 37kDa trp-holo-repressor/operator DNA complex

  • Lee, Donghan;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • The cross peak intensities versus mixing times of 2D NOESY spectrum for a corepressor L-trp were simulated for the case of a ligand exchanging between free (AX) and bound (A'X') forms in protein/DNA complex. The direct NOE (I(AX)) of the free ligand exhibited a small positive intensity indicative of the strong dominant influence of the bound ligand. The exchange-mediated NOE peak (I(AX')) was very sensitive to corepressor exchange. However, both diagonal (I(A'A')) and direct NOE (I(A'X')) intensities of the bound ligand were not affected much at initial stage. Both peaks were severely influenced by exchange at mixing times of greater than 100 ms. In conclusion, since the NOE intensity is a function of exchange rate, the exchange effect should be considered to properly extract accurate distance information for bound ligand in the presence of conformational exchange.

  • PDF

APPLICATION OF ALANINE/ESR SPECTRUM SHAPE CHANGE IN GAMMA DOSIMETRY

  • Choi, Hoon;Kim, Jeong-In;Lee, Byung-Ill;Lim, Young-Ki
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.313-318
    • /
    • 2010
  • Alnine pellets were installed in a nuclear power plant for one or two operation cycles and measured by electron spin resonance (ESR) spectrometers for dosimetry. Dose and "x/y ratio", i.e., satellite peak over main center peak ratio, were measured for the returned alanine dosimeters from the nuclear power plant and compared to the values of reference alanine dosimeters exposed only to gamma rays. The variation of the x/y ratio change depended on the population of radicals from each radiation component with different LET. The gamma dose in a mixed radiation field was estimated by an additive gamma ray irradiation experiment and the measured dose rate at specified locations in the containment building.

Electromagnetic Compatibility Study of a Medical Lead for MRI Systems (자기공명영상시스템에서의 의료용 리드선의 전자기적 호환 연구)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2019-2022
    • /
    • 2016
  • In the presence of an electrically conducting medical lead, radio frequency (RF) coils in magnetic resonance imaging (MRI) systems may concentrate the RF energy and cause tissue heating near the lead. A novel design for a medical lead to reduce this heating by introducing pins in the lead is presented. Peak 10 g specific absorption rate (SAR) in heart tissue, an indicator of heating, was calculated and compared for both conventional (Medtronic) lead design and our proposed design. Remcom XFdtd software was used to calculate the peak SAR distribution in a realistic model of the human body. The model contained a medical lead that was exposed to RF magnetic fields at 64 MHz (1.5 T), 128 MHz (3 T) and 300 MHz (7 T) using a model of an MR birdcage body coil. The proposed design of adding pins to the medical lead can significantly reduce the heating from different MRI systems.

Optimal Region of Interest Location of Test Bolus Technique in Extra Cranial Carotid Contrast Enhanced Magnetic Resonance Angiography

  • Choi, Kwan-Woo;Na, Sa-Ra;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.234-237
    • /
    • 2017
  • This study is aimed to optimize a location of region of interest (ROI) in test bolus carotid contrast enhanced magnetic resonance angiography (CE-MRA) at 3.0T. A total of consecutive 270 patients with no cardiovascular and vessel diseases were selected. Patients underwent elliptical centric 3D CE-MRA with the test bolus technique to identify the individual arterial arrival time. Quantitative measurements were performed by drawing ROIs of $25mm^2$ and signal intensities (SI) were measured in the center of common carotid artery (CCA), internal carotid artery (ICA) and aortic arch (AA). As a result, ROIs located within AA showed a significantly clarified arterial peak and over three times increased SI, while no significant arterial peak time differences were observed compared to ROIs located within CCA. In conclusion, it was demonstrated that the aortic arch is the optimal position to locate ROI in test bolus images of the carotid CE-MRA.

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF