• 제목/요약/키워드: Resonance mode

검색결과 807건 처리시간 0.074초

겹판스프링의 진동수해석에 관한 연구 (Study on the frequency analysis of the leaf spring)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제9권6호
    • /
    • pp.36-42
    • /
    • 2010
  • In this study, the deformation and stress are analyzed through modal and harmonic response analysis at resonance on leaf spring. The displacement range of 7 to 14 mm is shown at natural frequencies as 6 kinds of resonance modes. The maximum deformation is shown as 8.8781mm at Mode 2. The maximum displacement and stress at leaf spring are shown as 0.0458 mm and 72.533 MPa respectively on 1200 Hz. The comfortability of passenger becomes better on leaf spring at suspension system by use of this design model.

적층형 압전세라믹을 이용한 강압용 압전변압기의 설계 및 제조 (Design and Manufacture of Step-down Piezoelectric Transformers Multi-layered by Ceramic Sheets)

  • 정현호;이원재;김인성;송재성;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.680-683
    • /
    • 2001
  • The output characteristics of step-down piezoelectric transformer is changed by a structure of layers. In this paper, we simulated output characteristics of multi-layer piezoelectric transformers with variation of output layers. Also, fabricated piezoelectric transformers were compared with simulated data. From simulated piezoelectric transformers, the output voltage decreased with increasing number of layers. From these results, piezoelectric transformers were made and the output electrical power of the transformers was measured at resonance frequency and at other frequency. The electrical power of transformers was measured on each transformer's resonance mode. However, measured value of 12-layed transformer's output power was smaller than that of 6-layered transformer's one. It is supposed that internal capacitance and reactance of the piezoelectric transformer's were effected in this result. Therefore we need to connect other road resistance and capacitance in output circuit, in order to increase electrical power of transformers.

  • PDF

허니콤 표면의 마찰계수 특성에 관한 연구 (Part 2 : 마찰계수 급상승현상에 관한 고찰) (The Characteristic of Friction-Factor on Honeycomb Surfaces (Part II : Friction-Factor Jump Phenomenon))

  • 하태웅
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1439-1447
    • /
    • 1994
  • Test results of friction-factor for the flow of air in a narrow channel lined with various honeycomb geometries show that, generally, the friction-factor is nearly constant or slightly decreases as the Reynolds number(or Mach number) increases, a characteristic common to turbulent flow in pipes. However, in some test geometries this trend is remarkably different. The friction factor dramatically drops and then rises as the Mach number increases. This phenomenon can be characterized as a "friction-factor jump." Further investigations of the acoustic spectrum indicate that the "friction-factor jump" phenomenon is accompanied by an onset of a normal mode resonance excited coherent flow fluctuation structure, which occurs at Reynolds number of the order of $10^4$. New empirical friction-factor model for "friction-factor jump" cases is developed as a function of Mach number and local pressure.ach number and local pressure.

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia Kazinoki Sieb. - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Kim, Jae-Min;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.398-405
    • /
    • 2011
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different phenol resin impregnation ratios (40, 50, 60, 70%) for Broussonetia Kazinoki Sieb. Dynamic modulus of elasticity increased with increasing resin impregnation ratios. There was a close relationship between dynamic modulus of elasticity and static bending modulus of elasticity and between dynamic modulus of elasticity and MOR and between static bending modulus of elasticity and MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different impregnation ratios.

A Highly Efficient AC-PDP Driver Featuring an Energy Recovery Function in Sustaining Mode Operation

  • Kang, Feel-Soon;Park, Sung-Jun;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.100-108
    • /
    • 2002
  • A simple sustain driver employing an energy recovery function is proposed as a highly efficient driver of a plasma display panel. The proposed driver uses dual resonance in the sustaining mode operation: a main resonance between an inductor and an external capacitor to produce alternative pulses and a sub-resonance between an inductor and a panel to recover the energy consumption by the capacitive displacement current of the PDP. The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The operation of the proposed sustain driver is verified through simulation and experiments based on a 7.5-inch-diagonal panel with a 200 KHz operating frequency.

가열된 평판위에 매달려 있는 액적의 음향공진에 의한 열 및 물질 전달 촉진에 관한 연구 (Heat and Mass Transfer Enhancement of a pendant droplet on heated horizontal surface by acoustic resonance)

  • 문종훈;강병하
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.335-340
    • /
    • 2005
  • Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. The evaporation was observed at atmosphere pressure. The droplet was recorded throughout the entire evaporation process and transient variations of the volume was measured. The evaporation process of oscillating droplet with thermofoil has been also observed to investigate analyzing the resonance effect on the thermal characteristics of droplet. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. During imposing the acoustic wave, the pendant droplet makes a rotating motion in its longitudinal axis which is a new shape oscillation mode. The evaporation rate of a pendant droplet at resonant frequency is significantly enhanced.

  • PDF

케이블 지지된 풍력발전기 타워 구조 모델의 진동해석 (Vibration Analysis of a Cable Supported Wind Turbine Tower Model)

  • 김석현;박무열;최승훈
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

TA-ESPI에 의한 외팔보의 탄성계수 측정 (Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI)

  • 이항서;김경석;강기수;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

모드해석을 통한 마운트 공진회피 설계 (Design for Resonance Avoidance of Mount Through the Modal Analysis)

  • 이종명;유현탁;박규진;최현철;최병근
    • 한국소음진동공학회논문집
    • /
    • 제25권7호
    • /
    • pp.481-486
    • /
    • 2015
  • This paper provides how to solve the problems analytically and experimentally that occur for testing the water injection pump under development. First of all, water injection pump, based on shaft system dynamic analysis, is verified by measuring the behavior of the shaft system. After the water injection pump is measured, the structural resonances which can cause excessive noise, degradation the equipment life and malfunction are found. Therefore, by changing the structural design, the reso- nance should be avoided. Application of the design variables to the experimentally resonance avoid- ance is difficult. So analytically, with application of the design variables, the design will be changed with mode analysis using FEM.

플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계 (2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding)

  • 하창용;이수일
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.