• 제목/요약/키워드: Resonance damping

검색결과 347건 처리시간 0.019초

Piezoelectric shunt damping by synchronized switching on negative capacitance and adaptive voltage sources

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.396-411
    • /
    • 2014
  • Synchronized switch damping (SSD) techniques have recently been developed for structural vibration control using piezoelectric materials. In these techniques, piezoelectric materials are bonded on the vibrating structure and shunted by a network of electrical elements. These piezoelectric materials are switched according to the amplitude of the excitation force to damp vibration. This paper presents a new SSD technique called 'synchronized switch damping on negative capacitance and adaptive voltage sources' (SSDNCAV). The technique combines the phenomenon of capacitance transient charging and electrical resonance to effectively dampen the structural vibration. Also, the problem of stability observed in the previous SSD techniques is effectively addressed by adapting the voltage on the piezoelectric patch according to the vibration amplitude of the structure. Analytical expressions of vibration attenuation at the resonance frequency are derived, and the effectiveness of this new technique is demonstrated, for the control of a resonant cantilever beam with bonded piezoelectric patches, by comparing with SSDI, SSDVenh, and SSDNC techniques. Theoretical predictions and experimental results show the remarkable vibration damping capability of SSDNCAV technique, which was better than the previous SSD techniques. The broadband vibration control capabilities of SSDNCAV technique are also demonstrated, which exceed those of previous SSD techniques.

Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys

  • Yun, Chul-Yong;Kim, Dae-Sung;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.137-147
    • /
    • 2006
  • In this study, shape memory alloy damper with characteristics of pseudoelastic hysteresis for helicopter rotor blades are investigated. SMAs can be available in damping augmentation of vibrating structures. SMAs show large hysteresis in the process of pseudoelastic austenite-martensite phase transformation which takes place while subjected to loading above the austenite finish temperature. Since SMAs display pseudoelastic hysteresis behavior over large strain ranges, a significant amount of energy dissipation is possible. A damper can be designed with SMA wires prestressed to a baseline level somewhere in the middle of the pseudoelastic stress range. An experimental study of the effects of pre-strain and cyclic strain amplitude as well as frequency on the damping behavior of pseudoelastic shape memory alloy wires are performed. The effects of the shape memory alloy damper on aeroelastic and ground resonance stability of helicopter are studied. In aeroelastic stability, the dynamic characteristics of blades related to pitch angle and the amplitude of lag motion for the rotor equipped with SMA damper were examined. The performance of SMA damper on ground resonance instability are presented through the frequencies and modal damping with respect to rotating speed.

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

Sensorless Active Damping Method for an LCL Filter in Grid-Connected Parallel Inverters for Battery Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.280-286
    • /
    • 2018
  • A sensorless active damping scheme for LCL filters in grid-connected parallel inverters for battery energy storage systems is proposed. This damping method is superior to the conventional notch filter and virtual damping methods with respect to robustness against the variation of the resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the proposed damping method is explained in detail, along with the characteristic comparison to the conventional active damping methods. The performance verification of the proposed sensorless active damping method shows that its performance is comparable to that of the conventional virtual damping method, even without additional current sensors. Finally, simulation and experimental results are provided to examine the overall characteristics of the proposed method.

Damping determination of FRP-confined reinforced concrete columns

  • Li, Xiaoran;Wang, Yuanfeng;Su, Li
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.163-174
    • /
    • 2014
  • Damping as a material property plays an important role in decreasing dynamic response of structures. However, very little is known about the evaluation and application of the actual damping of Fiber Reinforced Polymer Confined Reinforced Concrete (FRP-C RC) material which is widely adopted in civil engineering at present. This paper first proposes a stress-dependent damping model for FRP-C RC material using a validated Finite Element Model (FEM), then based on this damping-stress relation, an iterative scheme is developed for the computations of the non-linear damping and dynamic response of FRP-C RC columns at any given harmonic exciting frequency. Numerical results show that at resonance, a considerable increase of the loss factor of the FRP-C RC columns effectively reduces the dynamic response of the columns, and the columns with lower concrete strength, FRP volume ratio and axial compression ratio or higher longitudinal reinforcement ratio have stronger damping values, and can relatively reduce the resonant response.

감쇠진동계에 부착된 복합동흡진기의 효과에 관한 연구 (A Study on the Effects of Dual Dynamic Vibration Absorber for Damped Vibration System)

  • 안찬우;최석창;김동영
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.1039-1048
    • /
    • 1997
  • This paper describes the effects of dual dynamic vibration absorbers attached to a primary vibration system with damping. The efficiency of dual dynamic vibration absorbers was investigated with the height of amplitude ratio at the resonance frequency ratio of the damped vibration system according to mass ratio, natural frequency ratio and damping ratio. The variation of amplitude ratio related to frequency ratio of primary vibration system is verified experimentally and theoretically according to dual dynamic vibration systems using computer program designed to find mutual relationship between two absorbers.

  • PDF

감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기 (Dynamic Vibration Absorber Having Coil Springs and Oil Damper for a Damped Vibration System)

  • Ahn, C.W.;Park, S.C.;Lee, H.B.
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.129-135
    • /
    • 1996
  • This paper presents the effectiveness of the dynamic vibration absorber consisting of a single mass, coil springs and oil damper on the resonance freauency ratio and amplitude ratio for damped linear systems, that is, primary vibration system with damping. The effects of the dynamic vibration absorber are investigated numerically and experimentally for values of mass ratio, natural frequency ratio, and damping ratio. The experimental results show good agreement with calculated ones. As a result, the characteristics shown by the present work are useful in optimal tuning the dynamic vibration absorber in practice.

  • PDF

와이어와의 접촉을 고려한 마스크의 진동 해석 (An Analysis of the Mask Vibration Considering the Damping Wire)

  • 유세준;신운서;장보웅
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.203-208
    • /
    • 2000
  • The vibration of a mask degrades the color purity in CRT Therefore, a damping wire is put into contact with the mask to reduce the vibration in perfectly flat CRT. In this study, we analyzed the vibration of the mask contacting with the damping wire using FEM. First we calculated the natural frequencies and mode shapes of the mask by modal analysis, and compared them with the measured results to confirm our finite element model. The modal analysis of the wire was also performed to investigate resonance with the mask. Finally, the transient dynamic analysis of the mask contacting with the wire was performed. The vibration of the mask was measured to confirm our analysis, and the results are in good agreement with the analysis.

  • PDF

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

  • Lee, Sinyeob;Kim, Dongkyu;Ahn, Sangkeun;Park, Junhong
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.155-159
    • /
    • 2013
  • The purpose of this study was to develop a theoretical model to analyze the vibration of finite railways forced by distributed moving loads. The vibration characteristics of compliantly supported beam utilizing compressional damping model were investigated through the Rayleigh-Ritz method. The distributed moving load was analyzed as the cross correlation function on railways. This allowed the use of statistical characteristics for simulation of the moving train wheels on the rail. The results showed there is a critical velocity inducing resonant vibration of the rail. The mass spring resonance from the rail fastening systems exhibited significant influence on the resulting vibration response. In particular, the effect of the viscoelastic core damping was investigated as an efficient method for minimizing rail vibration. The decrease of the averaged vibration and rolling noise generation by the damping core was maximized at the mass-stiffness-mass resonance frequency.

압전 션트를 이용한 패널의 투과소음 저감 성능에 관한 연구 (Performance test for transmitted noise reduction of smart panel using piezoelectric shunt damping)

  • 최진영;김재환;이중근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1120-1125
    • /
    • 2001
  • A new concept of piezoelectric smart panels for noise reduction in wide band frequencies is proposed and their possibility is experimentally investigated. Multi-mode damping is studied by using a newly proposed tuning method. The proposed panels are based on passive shunt damping methods. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. four PZT are attached on smart panel for improving performance of transmission noise reduction. 0 prove the concept of piezoelectric smart panels, an acoustic measurement experiment was performed. The smart panels exhibit a good noise reduction in middle and high frequency ranges due to the mass effects of absorbing materials or/and the air gap. The use of piezoelectric smart panel renders noise reduction at resonance frequency. Noise reduction at multiple resonance frequencies is experimentally investigaed.

  • PDF