• Title/Summary/Keyword: Resonance Cavity

Search Result 271, Processing Time 0.027 seconds

Noise and vibration reductions in exhaust duct system of cogeneration power plants (열병합발전소 배기 덕트 시스템의 소음 진동 저감)

  • Kim, W.H.;Joo, W.H.;Bae, J.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.641-646
    • /
    • 2004
  • Noise and vibration was encountered in exhaust duct system which is connected with a gas turbine and a heat recovery steam generator(HRSG) of a cogeneration power plants. Especially, these problems occurred when water was added to the fuel injection to reduce NOx contents of the exhaust gas. Through the cavity mode analysis and measurements, It was concluded that these problems occurred due to the acoustic resonance between the duct cavity mode and the excitation force induced by turbulent gas flow during water injection. To reduce the noise and vibration, optimal baffle plate to change the cavity mode was installed inside of duct and noise levels of about 8 dB(A) are reduced in duct system. The effects of baffle plate and guide vane to the HRSG or inlet duct vibration were also evaluated and it was verified that there is no relation to the resonance phenomena. So, vibration of inlet duct was easily reduced by the reinforcement of structures.

  • PDF

A Study of EM Wave Penetration and Scattering of Open Cylindrical Cavity (2차원 Open Cylindrical Cavity의 전자파 투과 및 산란특성연구)

  • Kim, Young-Joo;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.55-62
    • /
    • 2001
  • Field penetration and scattering characteristics of two dimensional open cylindrical cavity is studied. Exact analysis for this sort of structure is not achieved even if there are unusual phenomena of field penetration and scattering with cavity and aperture size. In this paper, we calculate a wide range of open cavity characteristics by using of FMM method, which is extended method of MOM. We find external mode of open cylindrical cavity corresponding to internal mode of closed cavity. The characteristics of resonance and scattering of this region is different compare with non resonant area. The result of study will apply to the EM wave shielding and RCS control.

  • PDF

Acoustic Transmission Characteristics of the Cylindrical Cavity with an Auxiliary Cavity and a Gap (보조 공동과 간극을 갖는 원통형 공동의 음향 전달 특성)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2010
  • In this paper, acoustic transmission characteristics are theoretically considered on a cylindrical cavity system. The cylindrical cavity system is a simplified model of the acoustic cavity of King Seongdeok Divine Bell and it consists of a main cavity, a gap and an auxiliary cavity, Under a point sound source in the main cavity, acoustic frequency response property is determined and acoustic modes are analysed. The results are compared with those by the boundary element analysis using SYSNOISE. Using the proposed theoretical method, the effect of the auxiliary cavity and the gap on the resonance frequency and sound transmission characteristics is identified. Finally the best combination of the auxiliary cavity and gap is determined for the maximum transmission of the source frequency.

The growth rates and tune shifts due to construction errors of RF cavity

  • Nam, Soon-Kwon;Kim, T.Y.;Lee, B.K.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.57-62
    • /
    • 1998
  • The resonance frequencies, shunt impedances and Q-values for the higher-order modes in our designed cavity are calculated by the computer codes URMEL and MAFIA. A new computer code is developed to calculate the complex tune shifts for the randomness of the higher-order mode frequencies due to the construction errors of a cavity. The results with the construction errors are compared to those fo without error cases for the dipole mode and quadrupole mode.

  • PDF

A Cavity-Assisted Atom Detector (CAAD) (캐비티-유도된 원자측정 장치)

  • Chough, Young-Tak;Hyuncheol Nha;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.124-125
    • /
    • 2000
  • We introduce a scheme with a maximized efficiency of detecting atoms passing through an optical standing-wave mode cavity. Consider a standing-wave optical cavity illuminated by a weak probe beam through one of its mirrors where the transmission through the other mirror is monitored by a photodetector. If an atom is put in the cavity, the atom-cavity coupling shifts the resonance frequency of the system via the so-called normal mode splitting, and thereby the transmission power will drop. In fact, this type of atom detection scheme has been used in recent single atom trap experiments In practice, however, the field in a standing-wave mode will have a geometrical structure having nodes and antinodes that when the atom traverses the cavity through one of the nodes, there will be no such effect of atom-field interaction. (omitted)

  • PDF

Mode Identification of Resonant Frequencies for a Dielectric Loaded Circular Cylindrical Cavity (유전체가 삽입된 원통형 공진기에서 공진주파수의 모드 구분)

  • Kim, Jin-Kook;Kim, Dong-Kyu;Choi, Hong-Ju;Hur, Jung;Lee, Sang-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.351-358
    • /
    • 1999
  • This paper describes the mode identification of resonant frequencies in dielectric loaded circular cylindrical cavity. To identify the mode of resonant frequencies, the calculated resonant frequencies were compared with the simulated ones in the air-filled circular cylindrical cavity by Microstripes EM simulator. With z-oriented magnetic field excitation, we could get only TE mode resonance, while all the modes including TM mode were observed with $\phi$-oriented magnetic field excitation. We could identify the modes with the two excitation methods. We applied the identification method to a dielectric loaded circular cylindrical cavity and compared these results with experimental ones. To certify the method, we traced resonance frequencies with varying the dielectric height. We observed that the resonance of $TE_{011}$ mode was changed dramatically while the variation of the $TE_{111}$ and $TE_{211}$ modes are relatively small.

  • PDF

MRI Findings of Obstructed Hemivagina and Ipsilateral Renal Agenesis (OHVIRA syndrome) with a Blind Megaureter: Case Report

  • Cho, Yun Hee;Sung, Deuk Jae;Han, Na Yeon;Park, Beom Jin;Kim, Min Ju;Sim, Ki Choon;Cho, Sung Bum
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.196-199
    • /
    • 2015
  • Obstructed hemivagina and ipsilateral renal anomaly (OHVIRA) syndrome is an uncommon congenital abnormality of the female urogenital tract characterized by the triad of uterine didelphys, obstructed hemivagina, and ipsilateral renal agenesis. A 13-year-old female presented with acute lower abdominal pain. Magnetic resonance imaging (MRI) revealed uterine didelphys, hematometrocolpos, obstructed hemivagina, and right ipsilateral agenesis, consistent with OHVIRA syndrome. Also, a well-defined mass with fluid signal intensity, mimicking adnexal neoplasm was seen in the right lower pelvic cavity adjacent to the posterior wall of the bladder. Vaginal septotomy and drainage of hematometrocolpos were done initially, but unilateral hysterectomy was later performed to relieve the patient's symptoms. The cystic mass in the right lower pelvic cavity was also excised and confirmed as a blind megaureter.

Effect of the Shape of a Guide Grill Above a Resonance Type Sound Absorbing Panel on Intake Flow into a Resonator (공명 흡음판 위 가이드 그릴의 형상이 공진기 흡입 유동에 미치는 영향)

  • Bae, Hyunwoo;Sung, Jaeyoung;Lee, Dong Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • This study investigates cavity flows through a guide grill above a resonator. Vortex distributions and intake flows are simulated for various shapes of the guide grill. The flows are assumed to be compressible, unsteady, and turbulent. Numerical simulations are conducted using a large eddy simulation (LES) model. To analyze the effect of the guide grill shape, three cavity lengths (0.2H, 0.6H, and 1.0H) and cavity angles ($30^{\circ}$, $45^{\circ}$ and $60^{\circ}$) are considered based on resonator height (H). The results show that the vortex generated in the resonator by cavity flow increases with cavity length. Thus, the intake flow is minimum at the smallest cavity length and angle. However, when cavity length is equal to resonator height, the intake flow decreases. The maximum intake flow occurs at a cavity angle $45^{\circ}$ at higher cavity lengths owing to the interaction between the vortex in the resonator and intake flow.

Fabrication and Performance of Electron Cyclotron Resonance Ion Milling System for Etching of Magnetic Film Device (자성박막 소자 에칭용 전자 사이클로트론 공명 이온밀링 시스템 제작과 특성연구)

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.149-155
    • /
    • 2015
  • The ECR (Electron Cyclotron Resonance) Ar ion milling was manufactured to fabricate the device of thin film. The ECR ion milling system applied to the device etching operated by a power of 600W, a frequency of 2.45 GHz, and a wavelength of 12.24 cm and transferred by a designed waveguide. In order to match one resonant frequency, a magnetic field of 908 G was applied to a cavity inside of ECR. The Ar gas intruded into a cavity and created the discharged ion beam. The surface of target material was etched by the ion beam having an acceleration voltage of 1000 V. The formed devices with a width of $1{\mu}m{\sim}9{\mu}m$ on the GMR-SV (Giant magnetoresistance-spin valve) multilayer after three major processes such as photo lithography, ion milling, and electrode fabrication were observed by the optical microscope.