• 제목/요약/키워드: Resolution analysis

검색결과 3,767건 처리시간 0.028초

최소 오차 원 해석을 위한 최적 해상도에 관한 연구 (The Optimal Resolution for Circle Analysis with the Minimum Error)

  • 김태현;문영식;한창수
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.55-62
    • /
    • 2000
  • In this paper, an algorithm for determining the optimal resolution has been described for measuring the actual length of circular objects. As the resolution gets higher, the measurement error in general becomes smaller because of the reduced distance per pixel. However, the higher resolution makes circular objects enlarged, which may produce an ill-conditioned system. That is, a small error in the boundary positions may result in a large error in the analysis of the circular objects. Taking this fact into account, a new measure is proposed to determine the optimal resolution. The actual errors have been calculated with various resolutions and the resolution with the minimum error has been decided as the optimal resolution. The analysis using various circles with different sizes indicates that the minimum measurement error is obtained when the whole circle appears in the screen as large as possible, regardless of the size of circle. The experimental results using real images have verified the validity of our analysis.

  • PDF

High Resolution Analysis for Defective Pixels Detection using a Low Resolution Camera

  • Gibour, Veronique;Leroux, Thierry;Bloyet, Daniel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.856-859
    • /
    • 2002
  • A system for high-resolution analysis of defective elementary cell (R, G or B) on Flat Panel Display (FPD) is described. Based on multiple acquisitions of low-resolution shifted images of the display, our system doesn't require a high-resolution sensor neither tedious alignment of the display, and will remain up to date even facing an important increase of the display dimensions. Our process, highly automated and thus flexible and robust, is expected to perform a full analysis in less than 60s. It is mainly intended for production tests and display classification by manufacturers.

  • PDF

Neighborhood Correlation Image Analysis for Change Detection Using Different Spatial Resolution Imagery

  • Im, Jung-Ho
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.337-350
    • /
    • 2006
  • The characteristics of neighborhood correlation images for change detection were explored at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the high spatial resolution image analysis, while bi-temporal Landsat $TM/ETM^{+}$ datasets of Suwon, South Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for change detection. The neighborhood correlation images created using the Landsat datasets resulted in somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed using the single and multiple neighborhood correlation image variables for both spatial resolution image scales.

Effects of Forcing Data Resolution in Macro Scale River Discharge Simulation

  • Tachikawa, Yasuto;Shrestha, Roshan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(II)
    • /
    • pp.1179-1186
    • /
    • 2002
  • Macro scale distributed hydrological models simulate river discharge with better accuracy but it depends upon the grid resolution of input data. Effects of different input resolutions are studied here. Three different grid resolution input data obtained from HUBEX-IOP EEWB data and GAME Re-analysis data are used to simulate river discharge and compared against the observed one. CAME Re-analysis 1.25-degree resolution data are found quite satisfactory in larger basins, while HUBEX-IOP EEWB 10-minute resolution data are better for small catchments. GAME Re-analysis 2.5-degree resolution data did not give good result. Simulated results by using spatially interpolated data are rather worse than using original data. The Huaihe River basin $(132350\textrm{km}^2)$ is taken as the case of study.

  • PDF

고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용 (Applying deep learning based super-resolution technique for high-resolution urban flood analysis)

  • 최현진;이송희;우현아;김민영;노성진
    • 한국수자원학회논문집
    • /
    • 제56권10호
    • /
    • pp.641-653
    • /
    • 2023
  • 기후변화와 도시화의 영향으로 인해 자연재해의 발생빈도와 규모가 증가하고 있다. 특히 도시 침수는 발생 시간이 짧고 막대한 인명 및 경제적 손실을 초래할 수 있기 때문에 신속하고 정확도 높은 예측 정보 생산이 중요하다. 하지만, 기존 물리과정 및 인공지능 기반 기법은 고해상도 침수 해석을 위해 많은 전산 자원이나 데이터가 요구되는 한계가 있다. 본 연구에서는 딥러닝 기반 초해상화(Super-Resolution) 기법을 통한 고해상도 도시 침수 해석 방법을 제안하고 적용성을 평가한다. 제안된 방법은 고해상도 물리 모형의 결과로 훈련된 초해상화 딥러닝 모형을 이용하여 저해상도 침수 해석 이미지를 고해상도로 변환한다. 미국 포틀랜드 도심지의 두 가지 침수 사례에 대해 적용, 4 m 공간해상도 물리 모의 결과를 1 m 급 고해상도 침수 해석 정보로 초해상화 하였으며, 초해상화 이미지와 고해상도 원본 간 높은 구조적 유사성이 확인되었다. 성능 지표로 평가한 결과, 전체 검증 대상 이미지에 대한 평균 PSNR 22.77 dB, SSIM 0.77로 우수하여, 초해상화 기법의 도시 침수 해석 적용성이 검증되었다. 제안된 방법은 적은 양의 침수 시나리오만으로도 효율적인 딥러닝 모형 훈련이 가능하고, 물리 모형의 정보를 최대한 활용할 수 있기 때문에, 고해상도 도시 침수 정보 생산에 효과적으로 사용될 수 있을 것으로 기대된다.

A multi-resolution analysis based finite element model updating method for damage identification

  • Zhang, Xin;Gao, Danying;Liu, Yang;Du, Xiuli
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.47-65
    • /
    • 2015
  • A novel finite element (FE) model updating method based on multi-resolution analysis (MRA) is proposed. The true stiffness of the FE model is considered as the superposition of two pieces of stiffness information of different resolutions: the pre-defined stiffness information and updating stiffness information. While the resolution of former is solely decided by the meshing density of the FE model, the resolution of latter is decided by the limited information obtained from the experiment. The latter resolution is considerably lower than the former. Second generation wavelet is adopted to describe the updating stiffness information in the framework of MRA. This updating stiffness in MRA is realized at low level of resolution, therefore, needs less number of updating parameters. The efficiency of the optimization process is thus enhanced. The proposed method is suitable for the identification of multiple irregular cracks and performs well in capturing the global features of the structural damage. After the global features are identified, a refinement process proposed in the paper can be carried out to improve the performance of the MRA of the updating information. The effectiveness of the method is verified by numerical simulations of a box girder and the experiment of a three-span continues pre-stressed concrete bridge. It is shown that the proposed method corresponds well to the global features of the structural damage and is stable against the perturbation of modal parameters and small variations of the damage.

지표격자해상도 및 우수관망 간소화 수준에 따른 도시홍수 예측 성능검토 (Performance Analysis of Grid Resolution and Storm Sewage Network for Urban Flood Forecasting)

  • 심상보;김형준
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.70-81
    • /
    • 2024
  • With heavy rainfall due to extreme weather causing increasing damage, the importance of urban flood forecasting continues to grow. To forecast urban flooding accurately and promptly, a sewer network and surface grid with appropriate detail are necessary. However, for urban areas with complex storm sewer networks and terrain structures, high-resolution grids and detailed networks can significantly prolong the analysis. Therefore, determining an appropriate level of network simplification and a suitable surface grid resolution is essential to secure the golden time for urban flood forecasting. In this study, InfoWorks ICM, a software program capable of 1D-2D coupled simulation, was used to examine urban flood forecasting performance for storm sewer networks with various levels of simplification and different surface grid resolutions. The inundation depth, inundation area, and simulation time were analyzed for each simplification level. Based on the analysis, the simulation time was reduced by up to 65% upon simplifying the storm sewer networks and by up to 96% depending on the surface grid resolution; further, the inundation area was overestimated as the grid resolution increased. This study provides insights into optimizing the simplification level and surface grid resolution for storm sewer networks to ensure efficient and accurate urban flood forecasting.

Boundary stress resolution and its application to adaptive finite element analysis

  • Deng, Jianhui;Zheng, Hong;Ge, Xiurun
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.115-124
    • /
    • 1998
  • A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Liu, H.
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.555-562
    • /
    • 2017
  • The accuracy and integrity of stress data acquired by bridge heath monitoring system is of significant importance for bridge safety assessment. However, the missing and abnormal data are inevitably existed in a realistic monitoring system. This paper presents a data reconstruction approach for bridge heath monitoring based on the wavelet multi-resolution analysis and support vector machine (SVM). The proposed method has been applied for data imputation based on the recorded data by the structural health monitoring (SHM) system instrumented on a prestressed concrete cable-stayed bridge. The effectiveness and accuracy of the proposed wavelet-based SVM prediction method is examined by comparing with the traditional autoregression moving average (ARMA) method and SVM prediction method without wavelet multi-resolution analysis in accordance with the prediction errors. The data reconstruction analysis based on 5-day and 1-day continuous stress history data with obvious preternatural signals is performed to examine the effect of sample size on the accuracy of data reconstruction. The results indicate that the proposed data reconstruction approach based on wavelet multi-resolution analysis and SVM is an effective tool for missing data imputation or preternatural signal replacement, which can serve as a solid foundation for the purpose of accurately evaluating the safety of bridge structures.