• Title/Summary/Keyword: Resistive droop control

Search Result 7, Processing Time 0.023 seconds

Wireless Parallel Operation of a Three-phase Modular UPS Inverter using Resistive Droop Control (저항성 수하 제어를 적용한 3상 모듈형 UPS 인버터의 비통신선 방식 병렬 운전)

  • Kim, Seon-Tae;Ji, Jun-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1672-1681
    • /
    • 2016
  • This paper proposes a wireless parallel operation method of three-phase modular UPS inverter using resistive droop control. Furthermore, it applies a virtual resistor to droop control so that the output impedance of UPS inverter gets closer to resistive. It makes resistive droop control effective. The simulation using PSIM was performed in order to verify the validity of proposed algorithm. After consisting two-parallel system with three-phase modular UPS inverter, the experiment according to resistive load was conducted. It demonstrated the performance of current sharing and power sharing.

Study on the Influence of Distribution Lines to Parallel Inverter Systems Adopting the Droop Control Method

  • Zhang, Xuan;Liu, Jinjun;You, Zhiyuan;Liu, Ting
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.701-711
    • /
    • 2013
  • This paper takes into account the influence of the different impedances of distribution lines on power distribution among inverters when the inverters are paralleled with the droop control method. The impact of distribution lines on the power distribution of inverters can be divided into two aspects. Firstly, since the distributed generators are in low voltage grids, there is resistive impedance in the distribution lines, which will cause control coupling and reduce system stability. The virtual negative resistive impedance of inverters is adopted in this paper to neutralize the resistive element of distribution lines and thus make the distribution line impedance purely inductive. Secondly, after solving the resistive impedance problem, the difference in the inductive impedance value of distribution lines due to the low density of distributed generators will cause an unequal share of reactive power. With regards to this problem, modification is put forward for the droop control strategy to share the reactive power equally. The feasibility of the design is validated by simulation and experimental results.

Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor (독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어)

  • Jung, Kyo-Sun;Lim, Kyung-Bae;Kim, Dong-Hwan;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

Parallel Operation of Microgrid Inverters Based on Adaptive Sliding-Mode and Wireless Load-Sharing Controls

  • Zhang, Qinjin;Liu, Yancheng;Wang, Chuan;Wang, Ning
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.741-752
    • /
    • 2015
  • This study proposes a new solution for the parallel operation of microgrid inverters in terms of circuit topology and control structure. A combined three-phase four-wire inverter composed of three single-phase full-bridge circuits is adopted. Moreover, the control structure is based on adaptive three-order sliding-mode control and wireless load-sharing control. The significant contributions are as follows. 1) Adaptive sliding-mode control performance in inner voltage loop can effectively reject both voltage and load disturbances. 2) Virtual resistive-output-impedance loop is applied in intermediate loop to achieve excellent power-sharing accuracy, and load power can be shared proportionally to the power rating of the inverter when loads are unbalanced or nonlinear. 3) Transient droop terms are added to the conventional power outer loop to improve dynamic response and disturbance rejection performance. Finally, theoretical analysis and test results are presented to validate the effectiveness of the proposed control scheme.

5-parallel operation of single-phase UPS inverters using resistive droop control (저항성 수하제어를 이용한 단상 UPS 인버터의 5-병렬운전)

  • Ji, Jun-Keun;Kuong, Samnang;Ku, Dae-Kwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.542-543
    • /
    • 2012
  • 본 논문에서는 저항성 수하제어 방식과 단일루프 강인 전압 제어기를 적용하여 단상 UPS 인버터의 비통신선 방식 5-병렬 운전 결과를 기술한다. 단일 루프 강인 전압 제어기를 이용해 단상 3kVA UPS 인버터 5대로 병렬운전 환경을 구축하였고, 저항성 주파수-전압 강하 방식의 수하 제어를 이용하여 저항 부하와 선형 부하에 대한 전력분담 특성을 PSIM 시뮬레이션을 통하여 확인하였다.

  • PDF