• Title/Summary/Keyword: Resistant performance

Search Result 685, Processing Time 0.025 seconds

Experimental Performance Evaluation of Displacement Amplification Damping Systems Using Cables and Pulleys (케이블과 도르래를 이용한 변위증폭형 감쇠시스템의 실험적 성능평가)

  • Oh, Jintak;Jung, In Yong;Ryu, Jaeho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • The vibration control device such as the damper can be used to reinforce the seismic performance of structures. The damper is activated by the deformation of structures during earthquake; however, the deformation of structures is extremely small, causing difficulty in using the damper. Therefore, there is a need for a method capable of amplifying small deformities and transmitting them to the damper. The purpose of this paper is to develop and evaluate a displacement amplification seismic system using cable-pulley. The appropriate cable was selected through a cable tensile performance test and the results of the frame experiment were compared with theoretical displacement amplification ratio values. As a result, it may be said that the proposed system using cable-pulley is useful for displacement amplification.

Fire Resistant Performance of Anti-Spalling ECC Layers in High-Strength Concrete Structures (ECC로 피복된 고강도콘크리트의 폭렬저감 및 열적특성에 관한 실험적 연구)

  • Lee, Jae-Young;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites(ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 3 HSC specimens are being exposed to fire, in order to examine the influence of various parameters(such as depth of layer=20, 30, 40mm; construction method=lining type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion(3hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

  • PDF

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • Ga, Jae-Won;Jang, Gwang-Seok;Lee, Mi-Hye
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF

A Experimental Study on the Fire Resistant Performance of the High Strength Concrete with Loading and Unloading test (재하 및 비재하 내화 실험을 통한 고강도콘크리트의 내화성능에 관한 실험적 연구)

  • Kim, Woo-Jae;Kim, Hyun-Bae;Kim, Kyu-Yong;Kim, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.61-64
    • /
    • 2009
  • Recently, the higher buildings are, the stronger concrete are used. Ultra high strength concrete have the possibility of spalling when a fire breaks out. so the fire-resistance performance is necessary to use the ultra high strength concrete on the high-rise building. On this study, the heating test for the concrete with loading/unloading is performed for ultra high strength concrete using nylon fiber. The heating test followed by ISO-834 heating curve on the real-size specimen and the strength of concrete are 60, 80, 100, 200 MPa.

  • PDF

A neural network model to assess the hysteretic energy demand in steel moment resisting frames

  • Akbas, Bulent
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.177-193
    • /
    • 2006
  • Determining the hysteretic energy demand and dissipation capacity and level of damage of the structure to a predefined earthquake ground motion is a highly non-linear problem and is one of the questions involved in predicting the structure's response for low-performance levels (life safe, near collapse, collapse) in performance-based earthquake resistant design. Neural Network (NN) analysis offers an alternative approach for investigation of non-linear relationships in engineering problems. The results of NN yield a more realistic and accurate prediction. A NN model can help the engineer to predict the seismic performance of the structure and to design the structural elements, even when there is not adequate information at the early stages of the design process. The principal aim of this study is to develop and test multi-layered feedforward NNs trained with the back-propagation algorithm to model the non-linear relationship between the structural and ground motion parameters and the hysteretic energy demand in steel moment resisting frames. The approach adapted in this study was shown to be capable of providing accurate estimates of hysteretic energy demand by using the six design parameters.

Introducing a precast moment resistant beam-to-column concrete connection comparable with in-situ one

  • Esmaeili, Jamshid;Ahooghalandary, Neyram
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.203-215
    • /
    • 2019
  • Precast reinforced concrete structure (PRCS) consists of prefabricated members assembled at worksites and has more connections limitations in comparison with the equivalent in-situ reinforced concrete structure (IRCS). As a result of these limitations, PRCSs have less ductility in comparison with IRCSs. Recent studies indicate that the most noticeable failure in PRCSs have occurred in their connection zone. The objective of this study is introducing a type of precast beam-to-column connection (PBC) which in spite of being simple is of the same efficiency and performance as in-situ beam-to-column connection (IBC). To achieve this, the performance of proposed new PBC at exterior joint of a four story PRCS was analyzed by pseudo dynamic analysis and compared with that of IBC in equivalent IRCS. Results indicated that the proposed connection has even better performance in terms of strength, energy dissipation and stiffness, than that of IBC.

Electrical Resistance Characteristics of Conductive Cement Composite with Deterioration Damage (열화손상이 발생된 전도성시멘트복합체의 전기저항특성)

  • Kim, Young-Min;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.149-150
    • /
    • 2020
  • Granting self-sensing performance in a building is an important performance to ensure the degree of damage and safety of the building. Since the current research is being conducted in the state before deterioration loss occurs, it is necessary to confirm whether the self-sensing performance is maintained even in the damaged conductive cement composite. As part of the study, electrical resistance characteristics were analyzed in conductive cement composites in which freeze-thawing and chemical corrosion occurred. As a result, it was found that the change in electrical resistance value due to freeze-thawing was not as large as 1%, and chemical corrosion occurred. It was found that the change in electrical resistance value of the tested specimen increased by about 10%.

  • PDF

A Study on Fire Resistance Performance Evaluation for Field Application of Ultra-High Strength Concrete (초고강도 내화 콘크리트의 현장 적용을 위한 내화성능 평가에 관한 연구)

  • Baek, Young-Woon;Yuk, Tae-Won;Park, Dong-Soo;Kim, Han-Sol;Lee, Hang-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.41-42
    • /
    • 2023
  • The physical performance of high-strength concrete deteriorates when exposed to high temperatures such as fire. In particular, in the case of ultra-high-strength concrete, there is a high possibility of explosion due to internal water pressure and thermal expansion due to the tight internal structure. In this paper, a fire resistance certification test was conducted for field application of ultra-high-strength fire-resistant concrete, and the fire resistance performance (temperature rise of main rebar) was compared according to the structural concrete cover thickness. As a result, when the covering thickness was 40 mm, three structures did not meet the certification standards, and when the covering thickness was 50 mm, all structures met the fire resistance certification standards.

  • PDF

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

A Study on Performance of Building Material using nano-hydrated Aluminum for Fire-Resistance (나노 수산화알루미나를 이용한 건설소재의 내화성능 개선연구)

  • Jo, Byung-Wan;Park, Jong-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.826-829
    • /
    • 2004
  • An increasing interest in fire safety engineering can currently be identified in Korea and overseas. The fire-resistant characteristics of spray coating material for fire protection with or without nano $Al(OH)_3$ colloid has been experimentally investigated and the results are presented in this paper. The fire-resistance characteristics of spray coating material with nano $Al(OH)_3$ were superior to those without $Al(OH)_3$. Especially, spray coating material with nano material showed that thermal characteristic in the early days was remarkably excellent.

  • PDF