• Title/Summary/Keyword: Resistant performance

Search Result 680, Processing Time 0.024 seconds

Development of C/SiC Composite Parts for Rocket Propulsion (로켓 추진기관용 C/SiC 내열부품 개발)

  • Kim, Yunchul;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.68-77
    • /
    • 2019
  • C/SiC composites were developed by a liquid silicon infiltration(LSI) method for use as heat-resistant parts of solid and liquid rocket propulsion engines. The heat resistance characteristics according to the composition ratio (carbon / silicon / silicon carbide) were evaluated by specimen test through arc plasma, supersonic torch test. An ablation equation for oxidation reactions was presented. Through the combustion test it was verified that various parts such as nozzle insert, exit cone and combustion chamber heat resistant parts for rocket propulsion can be manufactured and proved high ablation performance and thermal structure performance.

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.363-382
    • /
    • 2024
  • In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

The First Performance-based Structural Fire Design for Office Building in Korea

  • Min Jae Park
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.235-239
    • /
    • 2023
  • In this study, the fire resistance performance of the concrete-filled steel tube (CFT) columns and thin steel-plate composite (TSC) beams installed at a 20-story office building were designed using a performance-based structural fire design. Because of the lack of any specific provisions in the building code and guidelines for structural engineers about the performance-based approach, the only prescriptive approach has been selected for designing fire-resistant structures in Korea. To evaluate the fire resistance performance of the CFT columns and TSC beams, finite element analysis verified by the experimental results studied by several researchers was conducted with ABAQUS. From the fire scenario, the temperature distributions of the CFT columns and TSC beams were found via finite element analysis and the behaviors of the CFT columns and TSC beams were investigated in the structural field based on the temperature distribution.

Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System (모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가)

  • Lee, Deok Keun;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.56-64
    • /
    • 2013
  • The wind resistant capacity of bridges with a span of less than 200m is typically evaluated by Wind Resistant Design Manual for Highway Bridges in Japan. Also, the first vertical frequency plays an important role in the evaluation of their aerodynamic performance. An unexpected vortex-induced vibration of Nielsen arch bridge with span of 183m designed by this manual has been measured by monitoring system during typhoon. The amplitude of vibrations was about 2 times than the allowable vibration displacement. This paper presents the feature of vortex-induced vibration of this Nielsen arch bridge based on measured wind velocity, wind direction, and responses at midspan of main girder. From the result of FFT, the $1^{st}$ mode shape of the bridge is antisymmetric and the $2^{nd}$ is symmetric. Also, the dominant vibration of the bridge is the $2^{nd}$ vertical mode. According to these results, the $2^{nd}$ vertical vibration mode of this Nielsen arch bridge is prior to the first for the estimation of wind resistance capacity.

Detection of Methicillin-resistant Staphylococcs aureus from the Anterior Nares of Healthcare Workers in a Intensive Care Unit by Using PBP2a Rapid Kit and Direct Coagulase Test (중환자실에 근무하는 의료인의 전비강에서 PBP2a Rapid Kit와 직접 Coagulase 검사를 이용한 Methicillin-resistant Staphylococcus aureus의 검출)

  • Hong, Seung-Bok;Shin, Kyung-A;Son, Jae-Cheol;Shin, Seob-Kyeong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.2
    • /
    • pp.86-91
    • /
    • 2010
  • We evaluated the performance of a novel screening test, PBP2a MRSA rapid kit (Dinona Inc., Iksan, Korea), for methicillin-resistant Staphylococcus aureus (MRSA) based on a immunochromatographic assay. The test is able to detect penicillin-binding protein 2a (PBP2a) using the nasal specimens from health care workers. The nasal specimens were obtained from 69 healthcare workers and were incubated in enrichment broth followed eight hours incubatin in BHI with cefoxitin $4{\mu}g/mL$. These broth were tested by PBP2a Rapid Kit. The enrichment broths were also directly tested for tube coagulase using the conventional identification method. 19 of 22 MRSA showed positive results by PBP2a rapid test and direct coagulase test (the sensitivity for detection of MRSA, 86.36%). While, 8 of 47 non-MRSA showed false positive results for the two tests. All of the 8 non-MRSA which showed false positive were co-colonizing isolates with MRCNS and MSSA. In addition, 46 of 49 methicillin-resistant staphylococci (MRS) showed positive results for PBP2a MRSA rapid kit (the sensitivity for detection of MRS, 93.8%), and all of 20 non-MRS showed negative results (specificity, 100%). The combination of PBP2a MRSA rapid kit and direct coagulase test showed the good sensitivity for detection of MRSA from anterior nares but frequently showed false positive results from the co-colonizing carrier with MRCNS and MSSA.

  • PDF

Synthesis and Behavior of Silyl Group-Containing Acrylic Resins as Weather Resistant Coatings (시릴기를 함유하는 아크릴수지의 합성과 고내후성 도료로서의 거동)

  • 양인모;김성길;우종표;김명수;박홍수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.349-358
    • /
    • 2001
  • Silyl group-containing acrylic resins were synthesized to prepare weather resistant coatings. Acrylic copolymer was synthesized by the addition copolymerization of n-butyl methacrylate, methyl methacrylate, n-butyl acrylate and 3-methacryloxypropyl trimethoxysilane (MPTS). Acrylic copolymer were synthesized such that their $T_g$'s were adjusted to $20^{\circ}C$ and their MPTS contents were varied to 10, 20 and 30 wt%. As the content of MPTS increased, viscosity of coatings increased and thermal stability at the high temperature was improved. Coatings was prepared by blending the synthesized resins with a white pigment. The adhesion performance of coatings was superior with various substrates and their other properties were on the whole suitable. Weatherability was tested by outdoor exposure test, WOM test and QUV test. It was proved that resin with 30 wt% MPTS was suitable as the binder for weather resistant coatings.

  • PDF

Preparation and Characterization of Fire-Resistant Silicone Polymer Composites Containing Inorganic Flame Retardants (무기계 난연제를 첨가한 실리콘 고분자 내화재료의 제조 및 특성분석)

  • Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • The fire resistive materials are used to resist from fire accidents in the building. In this study silicone rubber/inorganic flame retardant composites were prepared by mechanical stirring method, using aluminium trihydroxide(ATH, $Al(OH)_3$) and magnesium dihydroxide(MDH, $Mg(OH)_2$) as synergistic fire-resistant additives. The thermal properties of the fire resistant composites were characterized by thermogravimetric analysis(TGA). In addition, rheological properties were observed by rheometer and fire-resistant properties were tested by gas torch. Through this study, we realized that the silicone rubber containing ATH, MDH increased the performance of fire-resistance.

A Study on the Long-Term Behavior Characteristics of Buoyancy-Resistant Permanent Anchor (부력저항 영구앵커의 장기거동 특성에 관한 연구)

  • Huh, Byungjoo;Kim, Chanki;Jung, Yonggun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.27-35
    • /
    • 2010
  • The structures built under the groundwater level are affected by the buoyancy force, which is hydrostatic pressure in the up direction. Recently, buoyancy-resistant anchor method has been applied in many cases of the construction of the important structure of large size, which is built under the groundwater level so that it takes high uplift pressure. Even if the construction cost of the method is very high, it surely increases the safety rate. However, the diagnosis of the performance of the buoyancy-resistant permanent anchor and the investigation of resistance mechanism are still insufficient. Especially, the long-term behavior of the anchor has not been studied well due to the difficulty in observation procedure. The contribution of this paper is the establishment of reasonable design methodology. We have measured anchor axial forces for 10 years after the construction, by using an automated measurement and a manual measurement by establishing a load cell in anchor head. Through the data collected from the measurements, we analyze the construction-step behavior of the anchor according to the self-weight variation of the building and the long-term behavior (i.e. movement within 10 years after the construction) of the anchor according to the passage of time.

A Secure Authentication and Key Agreement Scheme for Smart Grid Environments without Tamper-Resistant Devices (스마트 그리드 환경에서 변조 방지 디바이스를 사용하지 않는 안전한 사용자 인증 및 키 합의 방식)

  • Park, Ki-Sung;Yoon, Dae-Geun;Noh, SungKee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.313-323
    • /
    • 2020
  • With the development of smart grid technologies, a user can use the secure and reliable power services in smart gird environments. However, the users are not secure against various potential attacks because the smart gird services are provided through the public channel. Therefore, a secure and lightweight authentication and key agreement scheme has become a very important security issue in smart grid in order to guarantee user's privacy. In 2019, Zhang et al. proposed a lightweight authentication scheme for smart gird communications. In this paper, we demonstrate that Zhang et al.'s scheme is vulnerable to impersonation and session key disclosure attacks, and then we propose a secure authentication and key agreement scheme for smart grid environments without tamper-resistant devices. Moreover, we perform the informal security and the BAN logic analysis to prove that our scheme is secure various attacks and provides secure mutual authentication, respectively. We also perform the performance analysis compared with related schemes. Therefore, the proposed scheme is efficiently applicable to practical smart gird environments.

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.