• Title/Summary/Keyword: Resistant mutant

Search Result 232, Processing Time 0.029 seconds

Transcriptional Analysis Responding to Propanol Stress in Escherichia coli (대장균에서 프로판올 스트레스에 관한 전사분석)

  • Park, Hye-Jin;Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.417-427
    • /
    • 2012
  • We compared the transcriptome in response to propanol stress in wild-type and propanol-resistant mutant Escherichia coli using the DNA microarray technique. The correlation value of RNA expression between the propanol-treated wild type and the untreated-one was about 0.949, and 50 genes were differentially expressed by more than twofold in both samples. The correlation value of RNA expression between the propanol-treated mutant and the untreated one was about 0.951, and 71 genes in two samples showed differential expression patterns. However, the values between the wild type and mutant, regardless of propanol addition, were 0.974-0.992 and only 1-2 genes were differentially expressed in the two strains. The representative characteristics among differentially expressed genes in W3110 or P19 treated with propanol compared to untreated samples were up-regulation of hest shock response genes and down-regulation of genes relating to ribosome biosynthesis. In addition, many genes were regulated by transcription regulation factors such as ArcA, CRP, FNR, H-NS, GatR, or PurR and overexpressed by sigma factor RpoH. We confirmed that RpoH mediated an important host defense function in propanol stress in E. coli W3110 and P19 by comparison of cell growth rate among the wild type, rpoH disruptant mutant, and rpoH-complemented strain.

A Forward Genetic Approach for Analyzing the Mechanism of Resistance to the Anti-Cancer Drug, 5-Fluorouracil, Using Caenorhabditis elegans

  • Kim, Seongseop;Shim, Jaegal
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.119-123
    • /
    • 2008
  • Pyrimidine antagonists including 5-Fluorouracil (5-FU) have been used in chemotherapy for cancer patients for over 40 years. 5-FU, especially, is a mainstay treatment for colorectal cancer. It is a pro-drug that is converted to the active drug via the nucleic acid biosynthetic pathway. The metabolites of 5-FU inhibit normal RNA and DNA function, and induce apoptosis of cancer cells. One of the major obstacles to successful chemotherapy is the resistance of cancer cells to anti-cancer drugs. Therefore, it is important to elucidate resistance mechanisms to improve the efficacy of chemotherapy. We have used C. elegans as a model system to investigate the mechanism of resistance to 5-FU, which induces germ cell death and inhibits larval development in C. elegans. We screened 5-FU resistant mutants no longer arrested as larvae by 5-FU. We obtained 18 mutants out of 72,000 F1 individuals screened, and mapped them into three complementation groups. We propose that C. elegans could be a useful model system for studying mechanisms of resistance to anti-cancer drugs.

Identification of Plant Factors Involving in Agrobacterium-mediated Plant Transformation

  • Nam, Jaesung
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.387-393
    • /
    • 2000
  • The process by which Agrobacterium tumefaciens genetically transforms plants involves a complex series of reactions communicated between the pathogen and the plants. To identify plant factors involved in agrobacterium-mediated plant transformation, a large number of T-DNA inserted Arabidopsis thaliana mutant lines were investigated for susceptibility to Agrobacterium infection by using an in vitro root inoculation assay. Based on the phenotype of tumorigenesis, twelve T-DNA inserted Arabidopsis mutants(rat) that were resistant to Agrobacterium transformation were found. Three mutants, rat1, rat3, and rat4 were characterized in detail. They showed low transient GUS activity and very low stable transformation efficiency compared to the wild-type plant. The resistance phenotype of rat1 and rats resulted from decreased attachment of Agrobacterium tumefaciens to inoculated root explants. They may be deficient in plant actors that are necessary for bacterial attachment to plant cells. The disrupted genes in rat1, rat3, and rat4 mutants were coding a arabinogalactan protein, a likely cell wall protein and a cellulose synthase-like protein, respectively.

  • PDF

Kinetics of L-Phenylalanine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 L-Phenylalanine 생산의 동역학적 특성)

  • 김동일
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.125-131
    • /
    • 1990
  • Microbial production of L-phenylalanine using Corynebacterium glutamicum ATCC 21674, a tyrosine auxotroph resistant to aromatic amino acid analogues, has been studied and kinetic analysis was performed. Even though the strain was reported as a tyrosine auxotroph, it produced tyrosine and was able to grow on the minimal medium where no tyrosine was present. The average specific growth rate at the exponential growth phase was 0.087 hr-1. There was a dissociation of growth from the formation of the product. Linear correlation between biomass production and total CO2 production was obtained. The relationship between CO2 evolution rate and sugar consumption rate was also found to be linear.

  • PDF

Isolation and Characterization of Pigment-deficient Mutants from Azomonas agilis PY101

  • You, Kyung-Man;Lee, Sang-Hyeon;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.45-49
    • /
    • 1999
  • To investigate the mechanism of cadmium tolerance in a cadmium-resistant Azomonas agilis PY101 that produces a specific fluorescent pigment promoted by cadmium, we carried out Tn5 mutagenesis and isolated four pigment-deficient mutants. In these mutants, Ppg1, Ppg2, and Ppg3 remarkably reduced the pigment production to 15.3%, 11.2%, and 13.9%, respectively. Especially, Ppg4 mutant did not produce the pigment at all. None of the mutants grew in the presence of 1500 ppm of CdCl2 in growth medium, and they exhibited differential sensitivities to cadmium. Ppg1, Ppg2, Ppg3, and Ppg4 mutants were sensitive to 900 ppm, 1100 ppm, 1000 ppm, and 800 ppm of CdCl2, respectively. These mutants also showed noticeable increase, from 8.8-fold to 13.2-fold, in the size of growth inhibition zone compared with that of the will type after treatment with cadmium. Therefore, the pigment production of A. agilis PY101 was found to decrease the toxic effects of cadmium to the bacterium.

  • PDF

Molecular Cloning and Expression of dapA, the Gene for Dihydrodipicolinate Synthetase of Corynebacterium glutamicum (Dihydrodipicolinate Synthetase를 코딩하는 Corynebacterium glutamicum의 dapA 유전자의 클로닝 및 발현)

  • 오종원;한종권;이현환;현형환;이재흥;스테판정
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 1991
  • The dapA-complementing gene (L-2, 3-dihydrodipicolinate synthetase: DHDP synthetase, dapA) has been cloned by using a cosmid genomic bank of Corynebacterium glutamicum JS231 that is a lysine overproducer, AEC (s-(2-aminoethyl)-L-cysteine) resistant mutant. By enzymatic deletion analysis, the DNA region complementing the escherichia coli dapA host could be confined to 4.5kb SalI-generated DNA fragment. This DNA fragment was inserted into the C. glutamicum/E. coli shuttle vector pECCG117 to construct pDHDP5812. The specific activity of DHDP synthetase detected in C. glutamicum JS231/pDHDP5812 was increased about 10 fold above that of C. glutamicum JS231. The addition of leucine during growth did not repress the expressin of dapA, and the enzyme activity was not inhibited by lysine.

  • PDF

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli

  • Lee, Jongchan;Heo, Lynn;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.673-680
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Selection and Characterizations of Gamma Radiation-Induced Submergence Tolerant Line in Rice

  • Lee In-Sok;Kim Dong-Sub;hua Jin;Kang Si-Yong;Song Hi-Sup;Lee Sang-Jae;Lim Yong-Pyo;Lee Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2003
  • The combination of a radiation technique with an in vitro culture system was appiled to develop submergence tolerant rice. The 3,000 $M_3$ lines with an average 80 percent of fertile grain were utilized for the selection of submergence tolerance. Salt tolerant lines were selected based on high plant height, root length and root number after submergence in plastic pots. Of the lines tested, the tolerant line (403-6) showed a dramatic difference in morphological traits under submergence compared to its original variety (Dongjinbyeo). It was suggested that genetic variations between the original variety and $M_3$-403-6 did exist. The levels of $\alpha$-amylase and alcohol dehydrogenase activities were significantly increased in the mutant line compared to its original variety. The mutant with greater tolerance showed less electrolyte leakage indicating a greater membrane integrity and better survival. Also, this line was much more resistant to a salt stress of $1.25\%$ than the original variety. The proline level of the line was significantly (p<0.01> higher than that of the original variety. The relationships between the inhibition of growth caused by stress and the physiological changes in the plant cell were discussed.